Skip to main content
Log in

Multi-scale design of new lubricants featuring inhomogeneous viscosity

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Friction accounts for approximately 15% of fuel energy losses in internal combustion engine vehicles. To reduce it, new lubricants should be designed. Particle-based simulations can provide insight into the lubricant behaviour under extreme contact conditions, at a high computational cost. On the other hand, continuum methods, while capable of efficiently solving macroscopic problems, cannot resolve features at the nano-scale, due to the breakdown of the continuum assumption. This paper presents a multi-scale approach combining continuum and particle-based descriptions for simulating hydrodynamic lubrication systems to design new lubricants minimizing specific friction. Inspired by studies on ionic liquids as lubricants, their layering behaviour is emulated in the continuum domain by introducing inhomogeneous viscosity in the Navier–Stokes equations. Using an evolutionary algorithm, an optimized viscosity profile, leading to a potential improvement in friction performance up to 65%, is identified for a converging hydrodynamic slider. The study is then extended to nano-hydrodynamic lubrication. Specific particle typologies, featuring the aforementioned viscosity variations, are selected using coarse grain molecular dynamics simulations. Through the appropriate tuning of the particles’ properties, viscosity inhomogeneity is achieved and friction is reduced compared to the homogeneous case.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-D. Bermúdez, A.-E. Jiménez, J. Sanes, F.-J. Carrión, Molecules 14, 2888 (2009)

    Article  Google Scholar 

  2. B. Bhushan, J.N. Israelachvili, U. Landman, Nature 374, 607 (1995)

    Article  ADS  Google Scholar 

  3. S.J. Heo, S.B. Sinnott, D.W. Brenner, J.A. Harrison, Computational modeling of nanometer-scale tribology, inNanotribology and Nanomechanics (Springer, Berlin, Heidelberg, 2005), p. 623

  4. K. Gkagkas, V. Ponnuchamy et al., Tribol. Int. 113, 83 (2017)

    Article  Google Scholar 

  5. A.C.F. Mendonça, A.A.H. Pádua, P. Malfreyt, J. Chem. Theory Comput. 9, 1600 (2013)

    Article  Google Scholar 

  6. C. Ye, W. Liu, Y. Chen, L. Yu, Chem. Commun. 21, 2244 (2001)

    Article  Google Scholar 

  7. C. Ye, W. Liu, Y. Chen, Z. Ou, Wear 253, 579 (2002)

    Article  Google Scholar 

  8. A.-E. Jiménez, M.-D. Bermúdez, Wear 265, 787 (2008)

    Article  Google Scholar 

  9. B.S. Phillips, J.S. Zabinski, Tribol. Lett. 17, 533 (2004)

    Article  Google Scholar 

  10. J. Qu, P.J. Blau, S. Dai et al., Tribol. Lett. 35, 181 (2009)

    Article  Google Scholar 

  11. E. Manias, G. Hadziioannou, G. ten Brinke, Langmuir 12, 4587 (1996)

    Article  Google Scholar 

  12. J.P. Montfort, G. Hadziioannou, J. Chem. Phys. 88, 7187 (1988)

    Article  ADS  Google Scholar 

  13. S. Granick, Science 253, 1374 (1991)

    Article  ADS  Google Scholar 

  14. A.I. Vakis, V.A. Yastrebov, J. Scheibert et al., Tribol. Int. 125, 169 (2018)

    Article  Google Scholar 

  15. D. Savio, K. Falk, M. Moseler, Tribol. Int. 120, 269 (2018)

    Article  Google Scholar 

  16. I.A. Cosden, J.R. Lukes, Comput. Phys. Commun. 184, 1958 (2013)

    Article  ADS  Google Scholar 

  17. H.K. Versteeg, W. Malalasekera,An introduction to computational fluid dynamics. The finite volume method (Longman Scientific & Technical, 1996)

  18. H.G. Weller, G. Tabor, Comput. Phys. 12, 620 (1998)

    Article  ADS  Google Scholar 

  19. D.H. Kapsoulis, K.T. Tsiakas, X.S. Trompoukis, V.G. Asouti, K.C. Giannakoglou, Appl. Soft Comput. 64, 1 (2018)

    Article  Google Scholar 

  20. M. Karakasis, K.C. Giannakoglou, Eng. Optim. 38, 941 (2006)

    Article  MathSciNet  Google Scholar 

  21. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Bletsos.

Additional information

Contribution to the Topical Issue “Multiscale Materials Modeling”, edited by Yoji Shibutani, Shigenobu Ogata, and Tomotsugu Shimokawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bletsos, G., Gkagkas, K., Asouti, V. et al. Multi-scale design of new lubricants featuring inhomogeneous viscosity. Eur. Phys. J. B 92, 201 (2019). https://doi.org/10.1140/epjb/e2019-100239-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100239-8

Navigation