Skip to main content
Log in

Temperature- and diameter-dependent electrical conductivity of nitrogen doped ZnO nanowires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A modified formula to calculate the axial conductivity of nanowires was proposed based on the one-dimensional quantum state density distribution and Boltzmann transport theory. Numerical simulations of the ZnO nanowires (ZnONWs) and Nitrogen-doped ZnO nanowires (N-ZnONWs) were implemented using data from the first principles calculation. The results indicate that ZnONWs are low-conductivity wide band-gap semiconductors owing to their low carrier concentrations at room temperature, with N-doping increasing the conductivity. The N-ZnONWs carrier concentrations increased with increasing temperature, and possessed significantly higher carrier concentrations than ZnONWs. With an increase in diameter, the ZnONWs conductivities increased, whereas the N-ZnONWs conductivities decreased.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Thomas, K. Matthias-Heinrich, T. Ma, Superlattices Microstruct. 34, 3 (2005)

    Google Scholar 

  2. Y.I. Alivova, D.C. Look, B.M. Ataev, M.V. Chukichev, V.V. Mamedov, V.I. Zinenko, Y.A. Agafonov, A.N. Pustovit, Solid-State Electron. 48, 2343 (2004)

    Article  ADS  Google Scholar 

  3. H. Yang, H. Wang, G. Chen et al., Sol. Energy 80, 281 (2006)

    Article  ADS  Google Scholar 

  4. H. Yang, H. Wang, G. Chen, G. Wu, J. Mater. Sci. 46, 1044 (2011)

    Article  ADS  Google Scholar 

  5. Y. Hong, W. He, G. Chen, H. Yu, J Xi, Sol. Energy Mater. Sol. Cells 71, 407 (2002)

    Article  Google Scholar 

  6. F.Y. Meng, Y. Chiba, A. Yamada, M. Konagai, Sol. Energy Mater. Sol. Cells 91, 1887 (2007)

    Article  Google Scholar 

  7. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, Appl. Phys. Lett. 81, 3648 (2002)

    Article  ADS  Google Scholar 

  8. A. Wei, X.W. Sun, C.X. Xu, Z.L. Dong, M.B. Yu, W. Huang, Appl. Phys. Lett. 88, 213102 (2006)

    Article  ADS  Google Scholar 

  9. G.H. Du, F. Xu, Z.Y. Yuan, G. Van Tendeloo, Appl. Phys. Lett. 88, 4386 (2006)

    Google Scholar 

  10. D. Zhao, Y. Liu, D. Shen, Y. Lu, L. Zhang, X. Fan, J. Appl. Phys. 94, 5605 (2003)

    Article  ADS  Google Scholar 

  11. D. Meng, G. Zhen, Z. Lianqun et al., Crystals 8, 223 (2018)

    Article  Google Scholar 

  12. A.K. Sood, Y.R. Puri, W. Mai et al., Proc. SPIE Int. Soc. Opt. Eng. 6959, 30 (2008)

    Google Scholar 

  13. T.M. Borseth, F. Tuomisto, J.S. Christensen, E.V. Monakhov, B.G. Svensson, A. Yu. Kuznetsov, Phys. Rev. B 77, 045204 (2008)

    Article  ADS  Google Scholar 

  14. T. Yen, M. Dinezza, A. Haungs, S.J. Kim, W.A. Anderson, A.N. Cartwright, J. Vacuum Sci. Technol. B 27, 1948 (2009)

    Article  ADS  Google Scholar 

  15. J. Lv, C. Li, Appl. Phys. Lett. 103, 015501 (2013)

    Google Scholar 

  16. E.C. Lee, Y.S. Kim, Y.G. Jin, K.J. Chang, Physica B 308, 915 (2001)

    ADS  Google Scholar 

  17. Q. Hou, Z. Xu, X. Jia et al., J. Appl. Phys. 123, 055106 (2018)

    Article  ADS  Google Scholar 

  18. Y.Q. Liao, H.K. Yuan, A.L. Kuang et al., Appl. Mech. Mater. 130, 1438 (2011)

    Google Scholar 

  19. X. Zhang, A. Schleife, Phys. Rev. B 97, 125201 (2018)

    Article  ADS  Google Scholar 

  20. Z. Zhou, T. Komori, M. Yoshino, Y. Takeda, Appl. Phys. Lett. 86, 1979 (2005)

    Google Scholar 

  21. A. Boukhachem, B. Ouni, M. Karyaoui, A. Madani, R. Chtourou, M. Amlouk, Mater. Sci. Semicond. Process. 15, 292 (2012)

    Article  Google Scholar 

  22. S. Ghosh, Q. Wang, G.P. Das, P. Jena, Phys. Rev. B 81, 2020 (2010)

    Google Scholar 

  23. Q. Wang, Q. Sun, P. Jena, New J. Phys. 11, 063035 (2009)

    Article  ADS  Google Scholar 

  24. W. Xu, Z. Ye, T. Zhou, B. Zhao, L. Zhu, J. Huang, J. Cryst. Growth 265, 136 (2004)

    ADS  Google Scholar 

  25. S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B 63, 250 (2001)

    Google Scholar 

  26. M. Sahal, M. Mollar, B. Marí, in Renewable and Sustainable Energy Conference, Marrakech, Morocco, 14–17 November 2016 (IEEE Press, 2016), p. 11

  27. F. Zhang, Y. Ren, X. Wang, H. Fang, L.I. Fansheng, J. Zhang, J. Light Scatter. 30, 62 (2018)

    Google Scholar 

  28. S. Wang, Solid State Electronics (McGraw-Hill, New York, 1966)

  29. X.Y. Fang, X.X. Yu, Y.J. Li, H.M. Zheng, H.B. Jin, L. Wang, M.S. Cao, Phys. Lett. A 379, 2251 (2015)

    ADS  Google Scholar 

  30. P. Gong, Y.J. Li, Y.H. Jia, Y.L. Li, S.L. Li, X.Y. Fang, M.S. Cao, Phys. Lett. A 382, 2488 (2018)

    Article  ADS  Google Scholar 

  31. Y.J. Li, S.L. Li, P. Gong, Y.L. Li, X.Y. Fang, Y.H. Jia, M.S. Cao, Physica E 104, 253 (2018)

    Article  ADS  Google Scholar 

  32. A.A. Peyghan, M.T. Baei, S. Hashemian, J. Clust. Sci. 24, 347 (2013)

    Google Scholar 

  33. M.T. Baei, A.A. Peyghan, Z. Bagheri, M.B. Tabar, Phys. Lett. A 377, 111 (2012)

    Article  ADS  Google Scholar 

  34. Y.J. Li, S.L. Li, P. Gong, Y.L. Li, M.S. Cao, X.Y. Fang, Physica E 98, 196 (2018)

    ADS  Google Scholar 

  35. A.I. Ekimov, A.L. Efros, A.A. Onushchenko, Solid State Commun. 56, 924 (1985)

    Article  ADS  Google Scholar 

  36. X. Li, J. Qi, Q. Zhang et al., J. Appl. Phys. 112, 6291 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yong Fang or Mao-Sheng Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SL., Yu, XX., Li, YL. et al. Temperature- and diameter-dependent electrical conductivity of nitrogen doped ZnO nanowires. Eur. Phys. J. B 92, 155 (2019). https://doi.org/10.1140/epjb/e2019-100208-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100208-3

Keywords

Navigation