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Abstract. A microscopic theory of the electronic spectrum and of superconductivity within the t-J model
on the honeycomb lattice is developed. We derive the equations for the normal and anomalous Green func-
tions in terms of the Hubbard operators by applying the projection technique. Superconducting pairing of
d + id′-type mediated by the antiferromagnetic exchange is found. The superconducting Tc as a function
of hole doping exhibits a two-peak structure related to the van Hove singularities of the density of states
for the two-band t-J model. At half-filling and for large enough values of the exchange coupling, gapless
superconductivity may occur. For small doping the coexistence of antiferromagnetic order and supercon-
ductivity is suggested. It is shown that the s-wave pairing is prohibited, since it violates the constraint of
no-double-occupancy.

1 Introduction

Graphene, the two-dimensional carbon honeycomb lat-
tice, has been recently extensively studied due its peculiar
electronic properties caused by the low energy cone-type
electronic spectrum at the Dirac points K and K ′ in the
Brillouin zone (BZ) (for a review see [1]). The effects of
electronic interactions play a minor role close to half-
filling at low density of electronic states at the Dirac
points, but for large doping interactions appear to be
important. Studies of graphene beyond the simple model
of noninteracting electrons by taking into account the
Coulomb interaction reveal a rich phase diagram with
phase transitions to the antiferromagnetic (AF) state,
spin-density wave (SDW), charge-density wave (CDW),
and unconventional superconductivity (SC) (for a review
see [2]).

The superconducting order parameters in the two-
dimensional honeycomb lattice described by the hexag-
onal symmetry group D6h have a complex character. A
general symmetry analysis of available irreducible rep-
resentations (IR) and superconducting order parameters
is given in reference [3]. In the case of the singlet pair-
ing, the extended s-wave sx2+y2 order parameter (E1g

IR), dx2−y2 and dxy order parameters (E2g IR) preserving
the time-reversal symmetry and its time-reversal symme-
try breaking complex combination dx2−y2 ± idxy (d± id′)
are commonly discussed. The triplet pairing with the
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px + ipy (p + ip′) order parameter (E1u IR) is also often
discussed in the literature. This symmetry consideration
is very important in discussing SC in graphene. But it
can also be applied in studies of other electronic systems
with the two-dimensional honeycomb lattice, such as the
transition metal dichalcogenides [4].

Several models of the Bardeen–Cooper–Schrieffer-type
(BCS) were discussed. In reference [5] a model with the
on-site and the nearest-neighbor (nn) electron interac-
tions of the BCS-type was considered. Assuming bond-
independent anomalous correlation functions on the nn
lattice sites, the s-wave pairing with k-independent gap
induced by the on-site interaction and the extended
s-wave pairing induced by the nn interaction were found.
At the Dirac points close to half filling the latter can
be described as p + ip phase. At large value of coupling
constants a gapless SC emerges at half-filling.

The superconducting phase transition caused by the
Coulomb interaction was studied within the Hubbard
model [6] on the honeycomb lattice in a wide range of
the on-site Coulomb repulsion U/t from weak to strong
coupling (in graphene U/t = 4–5 and t ∼ 2.8 eV [1]). The
renormalization group (RG) approach was used in [7] to
study phase transitions in the extended Hubbard model
with the on-site interaction U , the nn repulsion V , and
the spin-exchange interaction J . Close to half-filling, the
SDW or CDW orders occur for large U and V , while
for a large doping f -wave triplet-pairing and d + id′-
wave singlet-pairing emerge. In reference [8], the extended
Hubbard model for graphene with the nn repulsion V and
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on-site interaction U was considered. Using the variational
cluster approximation and the cellular dynamical mean-
field theory the SC of different symmetries was studied.
Depending on the values of V and U , the triplet p-wave
symmetry and the chiral combination p+ ip′ were found,
while the singlet SC (extended s- or d-wave) was not
clearly detected.

Superconductivity on the honeycomb lattice is com-
monly studied also within the phenomenological t–J
model, where the exchange interaction (J ∼ t) is con-
sidered as a fitting parameter. In reference [9] SC was
studied in a graphite layer within the resonating valence
bonds (RVB) approach [10] for the t–J model. Both
the extended s-wave and d-wave pairing with the order
parameter determined by bond-dependent anomalous cor-
relation functions were considered. The superconducting
Tc for the d-wave pairing appears to be much larger than
for the extended s-wave pairing and has a high value with
a maximum at doping δ = 0.25. A similar model was
considered in reference [11] for the d + id′-pairing with
the bond-dependent anomalous correlation functions. The
spectrum of electronic excitations in the superconducting
state is determined by two gaps g± = |∆(±k)| with spin
up in one valley and spin down in the other valley with
zeros at K and K ′ points of the BZ, respectively. The
excitations are gapless at half filling for any value of the
coupling constant. The t–J model with the on-site inter-
action of intermediate strength U/t = 2.4 was considered
in reference [12] using the variational Monte Carlo study.
The superconducting ground state with the d + id′ pair-
ing for doping 0 < δ < 0.4 was found. It was estimated
that the superconducting Tc can reach room tempera-
tures at an optimal doping around δ = 0.15. The extended
t–J model with the nn and the next-nearest-neighbor
(nnn) exchange interaction J1 and J2, respectively, was
considered in reference [13]. In the heavily doped case
(around 3/8 and 5/8 filling), a chiral d+ id′ symmetry was
obtained. The competition between antiferromagnetism
and SC in the vicinity of half filling was considered by
applying the functional RG.

The quantum phase diagrams of both the Hubbard
model and the t–J model on the honeycomb lattice at
1/4 doping were studied in reference [14]. At this dop-
ing, in the nn tight-binding model the nested Fermi
surface emerges which is unstable in the presence of a
weak interaction. Using a combination of exact diag-
onalization, density matrix renormalization group, the
variational Monte Carlo method, and quantum field theo-
ries, it was shown that in a wide range of the Hubbard
repulsion, 1 < U/t < 40, or the exchange interaction,
0.1 < J/t < 0.8, the quantum ground state is either a
chiral SDW state or a spin-charge-Chern liquid, but not
a d + id′ superconductor. For the t–J model at larger
J/t > 0.8 a first-order phase transition to the d + id′

superconductor occurs.
A detailed study of the t–J model on the honey-

comb lattice was presented in reference [15]. Using the
Grassmann tensor product state approach, exact diago-
nalization and density-matrix renormalization methods,
the ground-state energy, the staggered magnetization in
the AF phase, and the SC order parameter as a function

of doping δ have been calculated. The occurrence of the
time-reversal symmetry breaking d + id′-wave SC up to
δ = 0.4 was found. Moreover, a coexisting of the SC and
AF order was observed for low doping, 0 < δ < 0.1, where
the triplet pairing is induced (see also [16]). In refer-
ence [3], SC on the honeycomb lattice close to the Mott
state at half filling was studied within the t–J model using
the renormalized mean-field theory and in the Hubbard
model by quantum Monte Carlo calculations. It was shown
that the chiral d + id′-wave state is the most favorable
state for a wide range of the on-site repulsion U . At the
same time, a mixed chirality d-wave state, such as a state
with d + id′-wave symmetry in one valley but d − id′-
wave symmetry in the other valley, is not possible in the
t–J model without reducing the translational symmetry.
No energetically favorable d-wave solution with an overall
zero chirality was found within the t–J model.

The van Hove singularity (VHS) scenario of SC being
developed for cuprates (see, e.g., [17]) was discussed in
several publications. In reference [18] the extended VHS
in doped graphene was found using the angle-resolved
photoemission spectroscopy. Considering the conventional
fluctuation exchange approximation [19] with the weak
Hubbard interaction U/t . 4, the competition between
magnetic instability and SC was analyzed. It was found
that SC plays a dominant role when the Fermi level is
placed close enough to the extended VHS, where the tran-
sition temperature Tc can be quite high. In reference [20]
it was shown that, due to the strong anisotropy of the
electron scattering at the VHS, attractive coupling chan-
nels appear from the originally repulsive interaction that
results in the superconducting pairing with Tc ∼ 10 K.
In reference [21] studies of the Hubbard model on the
honeycomb lattice with nn and nnn interactions show the
appearance of the extended VHS, where the density of
states diverges in a power law. Using the random-phase-
approximation and determinant quantum Monte Carlo
approaches a possible triplet p + ip′ SC with relatively
high Tc was found at low filling. The interplay between
SC and SDW order in graphene close to the VHS was
considered in reference [22]. The instabilities to both the
chiral d + id′ SC and the uniaxial SDW were found in a
model with four different interactions between fermions
near saddle points. The SC is strongest at the VHS,
but slightly away from it SDW appears first. To inves-
tigate the possibility of coexistence of SC and SDW, the
Landau–Ginzburg functional was derived. It was shown
that SDW does not coexist with SC, because both phases
are separated by first-order transitions. The dynamic clus-
ter approximation was used in reference [23] to study SC
in the Hubbard model with U/t = 2–6. A transition from
the d+ id′-wave singlet pairing, which dominates close to
the VHS filling, to the p-wave triplet pairing at larger
coupling was found.

In several studies the renormalized mean field theory
for the t–J model was employed. To take into account
strong correlations of electrons in the singly occupied
band, the hopping parameter t and exchange interac-
tion J were renormalized by the statistical weighting
factors gt = 2δ/(1 + δ) and gJ = 4/(1 + δ)2, as in the
RVB theory for cuprates [24]. We point out that this
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renormalization is rather crude, e.g., for δ = 0 it results
in the zero bandwidth ∼δt though at low doping spin-
polaron quasiparticles appear with a finite bandwidth of
the order J (see, e.g., [25]). Moreover, in the undoped case
the four times stronger exchange interaction 4J results
while the Heisenberg model with the original exchange
interaction J should be found. The slave-boson approxi-
mation also strongly violates the statistics of the projected
electrons in the original t–J model [26]. To take into
account the restriction of no-double-occupancy in the t–J
model, a technique for the projected electron operators,
the Hubbard operators [27], should be used.

In the present paper we develop a microscopic theory
of SC of strongly correlated electrons on the honeycomb
lattice employing the Hubbard operator technique. This
technique was used in our previous paper for the cal-
culation of the electronic spectrum, the spin-excitation
spectrum, and of thermodynamic quantities within the
t-J model [28]. Using the projection operator tech-
nique [29] developed for the thermodynamic Green func-
tions (GFs) [30,31] in reference [32], we derive equations
for the normal and anomalous (pair) GFs. In the general-
ized mean-field approximation (GMFA) a self-consistent
system of equations for the singlet order parameters is
obtained and the superconducting Tc as a function of dop-
ing δ is calculated. It is shown that the condition of the
no-double-occupancy of quantum states in the t–J model
is violated for the s-wave pairing, while the d+ id′ pairing
obeys this restriction.

The paper is organized as follows. In Section 2 the t–J
model for the honeycomb lattice is formulated. Equations
for the GFs are derived in Section 3. Gap equations and
the calculation of Tc are given in Section 4. The conclusion
is presented in Section 5.

2 The t-J model

The Hubbard model [6] is commonly used in studies of
correlated electronic systems. In the limit of strong cor-
relations the model is reduced to the one-subband t-J
model [26]. In the lattice site representation the model
reads:

H = −t
∑
〈i,j〉σ

ã+
i,σãj,σ − µ

∑
i,σ

ni,σ

+
J

2

∑
〈i,j〉

(
Si Sj −

1

4
ni nj

)
, (1)

where ã+
i,σ = a+

i,σ(1−ni,σ̄) and ãiσ = aiσ(1−ni,σ̄) are pro-
jected creation and annihilation electron operators on the
site i with spin σ/2 (σ = ±1, σ̄ = −σ), and the number
operator ni =

∑
σ ã

+
i,σ ãi,σ. Here 〈i, j〉 denote the nearest

neighbors for electron hopping with energy t and for spins
Si with AF exchange interaction J .

It is convenient to employ the Hubbard operator (HO)
technique [27] where the projected electron operators are
written as: ã+

iσ = Xσ0
i , ãjσ = X0σ

j . The HOs Xnm
i =

|i, n〉〈i,m| describe transitions between three possible

states at a lattice site i: |i, n〉 = |i, 0〉 and |i, σ〉 for an
empty site and for a singly occupied site by an electron
with spin σ/2, respectively.

The electron number operator and the spin operators
are defined as

ni =
∑
σ

Xσσ
i = X++

i +X−−i , (2)

Sσi = Xσσ̄
i , Szi = (σ/2) [Xσσ

i −X σ̄σ̄
i ]. (3)

The commutation relations for the HOs read:

[
Xnm
i , Xkl

j

]
± = δij

(
δmkX

nl
i ± δnlXkm

i

)
. (4)

The upper sign refers to Fermi-type operators such as
X0σ
i , while the lower sign refers to Bose-type operators

such as ni (2) or the spin operators (3). The complete-
ness relation for the HOs, X00

i +
∑
σX

σσ
i = 1, rigorously

preserves the constraint of no-double-occupancy of the
quantum state |i, n〉 on any lattice site i.

In terms of HOs the t-J model (1) takes the form:

H = −t
∑
〈i,j〉σ

Xσ0
i X0σ

j − µ
∑
iσ

Xσσ
i

+
J

4

∑
〈i,j〉σ

(
Xσσ̄
i X σ̄σ

j −Xσσ
i X σ̄σ̄

j

)
. (5)

We consider the t-J model on the honeycomb lattice which
is bipartite with two triangular sublattices A and B. Each
of the N sites on the A sublattice is connected to three nn
sites α = 1, 2, 3 belonging to the B sublattice by vectors
δα, and N sites on B are connected to A by vectors −δα:

δ1 =
a0

2
(
√

3,−1), δ2 = −a0

2
(
√

3, 1), δ3 = a0(0, 1). (6)

The basis vectors are a1 = δ3 − δ2 = (a0/2)(
√

3, 3) and

a2 = δ3 − δ1 = (a0/2)(−
√

3, 3), the lattice constant is

a = |a1| = |a2| =
√

3a0, where a0 is the nn distance; here-
after we put a0 = 1. The reciprocal lattice vectors are
k1 = (2π/3)(

√
3, 1) and k2 = (2π/3)(−

√
3, 1). In the two-

sublattice representation it is convenient to split the site
indices into the unit cell and sublattice indices, i→ iA, iB.

The chemical potential µ depends on the average
electron occupation number

n = nA = nB =
1

N

∑
i,σ

〈Xσσ
iA 〉, (7)

where N is the number of unit cells and 〈...〉 denotes the
statistical average with the Hamiltonian (5).
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3 Green functions

3.1 Equations for the Green functions

To consider SC within the model (5), we introduce the
anticommutator retarded matrix GF [30,31]

Gijσ(t− t′) = −iθ(t− t′)〈{X̂iσ(t), X̂†jσ(t′)}〉

≡ 〈〈X̂iσ(t), X̂†jσ(t′)〉〉, (8)

where {X,Y } = XY + Y X, X(t) = eiHtXe−iHt (~ = 1),
and θ(x) is the Heaviside function. Here we use Nambu

notation and introduce the vector Hubbard operators X̂iσ

and X̂†jσ with 4 components:

X̂iσ =

 X0σ
iA

X0σ
iB

X σ̄0
iA

X σ̄0
iB

, X̂†jσ =
(
Xσ0
jAX

σ0
jB X

0σ̄
jAX

0σ̄
jB

)
. (9)

The Fourier representation in (k, ω)-space is defined by

Gijσ(t− t′) =

∫ ∞
−∞

dω

2π
e−iω(t−t′)Gijσ(ω),

Gijσ(ω) =
1

N

∑
k

eik(ri−rj)Gσ(k, ω). (10)

The 4× 4 matrix GF (8) can be written as

Gσ(k, ω) =

(
Ĝ(k, ω) F̂σ(k, ω)

F̂ †σ(−k, ω) − Ĝ(k,−ω)

)
, (11)

where the components of the normal GF read as

Ĝ(k, ω) =

(
GAA(k, ω) GAB(k, ω)
GBA(k, ω) GBB(k, ω)

)
, (12)

and the components of the anomalous GF are given by

F̂σ(k, ω) =

(
FσAA(kω) FσAB(k, ω)
FσBA(k, ω) FσBB(k, ω)

)
. (13)

To calculate the GF (8), we use the equation of motion
method. Differentiating the GF with respect to time t we
obtain

ωGijσ(ω) = δijQ + 〈〈[X̂iσ, H] , X̂†jσ〉〉ω, (14)

where Q = 〈{X̂iσ, X̂
†
iσ}〉 = τ̃0Q . Here, τ̃0 is the 4 × 4

unit matrix and in the paramagnetic state, Q = 〈X00
iβ +

Xσσ
iβ 〉 = 1− n/2 .
For a system of strongly correlated electrons as in

the t–J model it is convenient to choose the mean-field
contribution in the equations of motion (14) as the zeroth-
order quasiparticle (QP) energy. We calculate it in the
GMFA using the projection operator method [32]. In this

approach we write the operator [X̂iσ, H] in (14) as a
sum of the linear part, proportional to the single-particle

operator X̂iσ, and the irreducible part Ẑ
(ir)
iσ orthogonal

to X̂iσ:

Ẑiσ = [X̂iσ, H] =
∑
l

EilσX̂lσ + Ẑ
(ir)
iσ . (15)

The orthogonality condition 〈{Ẑ(ir)
iσ , X̂†jσ}〉 = 0 deter-

mines the linear part, the zeroth-order QP energy:

Eijσ = 〈{[X̂iσ, H], X̂†jσ}〉Q
−1 =

(
Êij ∆̂ijσ

∆̂∗jiσ − Êji

)
, (16)

where Êij and ∆̂ijσ are the normal and anomalous compo-
nents of the matrix. The corresponding zeroth-order GF
in (14) in the Fourier representation (10) is given by

G0
σ(k, ω) =

(
ωτ̃0 − Eσ(k)

)−1

Q , (17)

Eσ(k) =

(
Ê(k) ∆̂σ(k)

∆̂∗σ(k) − Ê(k)

)
. (18)

It is possible to calculate the self-energy operator given

by the many-particle GF 〈〈Ẑ(ir)
iσ | X̂†jσ〉〉ω in (14) and to

derive the Dyson equation for the GF (8), as has been done
in our previous publications (see [33,34]). In the present
paper we consider the theory in GMFA within the zeroth-
order approximation for the GF (17).

The components of the energy matrix (16) are deter-
mined by the commutators:

Êij = 〈{[
(
X0σ
iA

X0σ
iB

)
, H],

(
Xσ0
jAX

σ0
jB

)
}〉Q−1, (19)

∆̂ij,σ = 〈{[
(
X0σ
iA

X0σ
iB

)
, H],

(
X0σ̄
jAX

0σ̄
jB

)
}〉Q−1. (20)

Performing commutations and introducing the Fourier
representation, X0σ

iA = (1/
√
N)
∑

k eikriX0σ
kA , we obtain:

Ê(k) =

(
εA εAB(k)

εBA(k) εB

)
, (21)

εA = 〈{[X0σ
kA, H], Xσ0

kA}〉 Q−1 = −µ̃,

εB = 〈{[X0σ
kB , H], Xσ0

kB}〉 Q−1 = −µ̃,

εAB(k) = 〈{[X0σ
kA, H], Xσ0

kB}〉 Q−1 = −t̃ γ(k),

εBA(k) = εAB(k)∗ = −t̃ γ∗(k), (22)

where γ(k) =
∑
α exp(ik

−→
δα) and |γ(k)|2 =

1 + 4 cos(
√

3kx/2)[cos(
√

3kx/2) + cos(3ky/2)]. The re-
normalized chemical potential µ̃ and hopping parameter
t̃ were calculated in reference [28] and are given by
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the relations:

µ̃ = µ− 3t

Q
D1 +

3J

4
n− 3J

2Q
C1, (23)

t̃ = tQ

(
1 +

3C1

2Q2

)
+ J

D1

2Q
. (24)

Here the nn correlation functions for electrons and spins
are:

D1 = 〈Xσ0
iAX

0σ
i+δ1,B〉, C1 = 〈SziASzi+δ1,B〉. (25)

The anomalous energy matrix for the gaps reads:

∆̂σ(k) =

(
∆Aσ ∆ABσ(k)

∆BAσ(k) ∆Bσ

)
, (26)

∆Aσ = ∆Bσ ≡ ∆σ = 〈{[X0σ
kA, H], X0σ̄

−kA}〉 Q−1

= 2t
∑
l

〈X0σ̄
lBX

0σ
iA 〉Q−1, (27)

∆ABσ(k) = 〈{[X0σ
kA, H], X0σ̄

−kB}〉 Q−1

= − J
Q

∑
rj=ri+δα

exp[ik(rj − ri)] 〈X0σ̄
jBX

0σ
iA 〉, (28)

∆BAσ(k) = 〈{[X0σ
kB , H], X0σ̄

−kA}〉 Q−1

= −∆ABσ̄(−k) = ∆ABσ(−k). (29)

Note that both gap functions ∆σ and ∆ABσ(k) are deter-
mined by the nn correlation functions 〈X0σ̄

jBX
0σ
iA 〉, since we

have no pairing on one lattice site contrary to reference [5].
Using equations (21) and (26) we obtain the energy

matrix:

Eσ(k) =


−µ̃ − t̃ γ(k) ∆σ ∆ABσ(k)
−t̃ γ∗(k) − µ̃ ∆ABσ(−k) ∆σ

∆∗σ ∆∗ABσ(−k) µ̃ t̃ γ(k)
∆∗ABσ(k) ∆∗σ t̃ γ∗(k) µ̃

. (30)

We point out that the matrix (30) is similar to the
matrix in the superconducting state in MFA for graphene
obtained in references [5] and [11] but with the renormal-

ized chemical potential µ̃ and hopping parameter t̃.
The GF in equation (17) is defined by the inverse matrix(
ωτ̃0 − Eσ(k)

)−1

. Its calculation results in the GF:

G0
σ(k, ω) =

Q

D̃(k, ω)
AT
σ (k, ω), (31)

where AT
σ (k, ω) is the transposed matrix of the cofactors

of the matrix
(
ωτ̃0 − Eσ(k)

)
.

The diagonal and off-diagonal normal Gαβ(k, ω) and
anomalous Fαβσ(k, ω) GFs components in the matrix (11)

read:

GAA(k, ω) = 〈〈X0σ
kA , X

σ0
kA〉〉ω =

A11Q

D̃(k, ω)
, (32)

GAB(k, ω) = 〈〈X0σ
kA , X

σ0
kB〉〉ω =

A21Q

D̃(k, ω)
, (33)

FσAA(k, ω) = 〈〈X0σ
kA , X

0σ̄
−kA〉〉ω =

Aσ31Q

D̃(k, ω)
, (34)

FσAB(k, ω) = 〈〈X0σ
kA , X

0σ̄
−kB〉〉ω =

Aσ41Q

D̃(k, ω)
. (35)

The coefficients Anm are given by the equations:

A11(k) = (ω2 − µ̃2)(ω − µ̃)−∆∗ABσ(−k) ∆∗σ t̃γ(k)

−∆σ∆∗ABσ(−k) t̃ γ∗(k)− |∆σ)|2 (ω − µ̃)

−(ω + µ̃) t̃2 |γ(k)|2 − |∆ABσ(−k)|2(ω − µ̃), (36)

A21(k) = −t̃ γ(k) (ω − µ̃)2 + |∆σ|2 t̃ γ(k)

+∆2
ABσ(k) t̃ γ∗(k) + ∆ABσ(k) ∆∗σ (ω − µ̃)

+t̃3 γ(k) |γ(k))|2 + ∆σ ∆ABσ(k) (ω − µ̃), (37)

Aσ31(k) = −∆ABσ(−k) t̃ γ(k) (ω − µ̃)−∆σ |∆Bσ|2

+∆ABσ(k) t̃ γ∗(k) (ω + µ̃) + ∆ABσ(k) ∆ABσ(−k) ∆∗σ

+∆σ (ω2 − µ̃2 − t̃2 |γ(k)|2), (38)

Aσ41(k) = −∆ABσ(−k) t̃2 γ2(k) + ∆2
σ ∆ABσ(k)

+∆ABσ(k)(ω2 − µ̃2)−∆2
ABσ(k) ∆ABσ(−k)

+∆σ 2µ̃ t̃ γ(k). (39)

The determinant D̃(k, ω) of the matrix,

D̃(k, ω) =‖ ωτ̃0 − Eσ(k) ‖, (40)

gives the equation for the spectrum in the superconduct-

ing state D̃(k, ω) = 0 which can be written in a general
case (with notations ∆σ± ≡ |∆ABσ(±k)|) as:

ω4 − 2ω2(∆2
σ +

1

2
(∆2

σ+ + ∆2
σ−) + t̃2 |γ(k)|2 + µ̃2)

+∆2
σ+ ∆2

σ− + t̃4 |γ(k)|4 + µ̃4 + ∆4
σ

+2 t̃2 Re[γ(k)2∆∗ABσ(k)∆ABσ(−k)]− 2t̃2 |γ(k)|2µ̃2

+(∆2
σ+ + ∆2

σ−) µ̃2 + 2∆2
σ(µ̃2 + t̃2 |γ(k)|2)

−4 t̃ µ̃∆σ Re[∆ABσ(−k) γ(k) + ∆ABσ(k) γ∗(k)]

−2 ∆2
σRe[∆ABσ(k)∆ABσ(−k)] = 0. (41)

The solution of this equation for the extended s-pairing
(see Eq. (54)) gives the spectrum of excitations:

Ω2(k) = (µ̃± t̃ |γ(k)|)2 + (∆σ ± |∆ABσ(k)|)2, (42)

which coincides with the spectrum for graphene in MFA
found in reference [5]. Note that for the gap ∆σ = 0 the
spectrum is gapless at µ̃ = 0 at six corners of the BZ
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at K,K ′ points: Ωs(k) = t̃ |γ(k)|
√

1 + ∆2
ABσ/t̃

2, as was

pointed out in [5].
The spectrum for the d-pairing (see Eq. (55)) resulting

from equation (41) with ∆σ = 0 has a more complicated
structure with two gaps ∆σ±:

Ω2(k) =
1

2
(∆2

σ+ + ∆2
σ−) + t̃2 |γ(k)|2 + µ̃2

±
{
t̃2 |γ(k)|2(4 µ̃2 + ∆2

σ+ + ∆2
σ−) +

1

4
(∆2

σ+ −∆2
σ−)2

−2 t̃2 Re[γ(k)2∆∗ABσ(k)∆ABσ(−k)]
}1/2

. (43)

A similar spectrum was found for the d-wave symmetry in
reference [11]. Since the d-wave gap (55) is zero at three
corners of the BZ at K points and has a maximum value at
another three corners of the BZ at K ′ points, the spectrum
(43) is gapless at µ̃ = 0 at K points and has a maximum
value at K ′ points (see also Refs. [2,13]).

3.2 Normal state Green function

The determinant for the normal state GFs (32) and (33)
reads

D̃(k, ω) = D(k, ω)D(k,−ω),

D(k, ω) = [ε+(k)− ω][ε−(k)− ω]. (44)

Here the electronic spectrum is given by the matrix (30)
in the normal state (cf. Ref. [28]):

ε±(k) = −µ̃± t̃ |γ(k)|. (45)

The spectrum has the Dirac cone-type behavior at K and
K ′ points at the corners of the BZ as in graphene. The
cones touch the Fermi surface (FS) at µ̃ = 0 for half filling
at the electron occupation number n = 2/3 in the t-J
model. The detailed doping dependence of the FS was
considered in reference [28].

For the normal state GFs (32) and (33) with the
coefficients A11 (36) and A21 (37) we obtain:

GAA(k, ω) =
Q

2

[ 1

ω − ε+(k)
+

1

ω − ε−(k)

]
, (46)

GAB(k, ω) = − Qγ(k)

2 |γ(k)|

[ 1

ω − ε+(k)
− 1

ω − ε−(k)

]
. (47)

The density of electronic states (DOS) at the Fermi energy
µ̃ in the normal state is determined by the GF (46) and,
for the dispersion ε±(k) (45), is given by the equation:

N(µ̃) =
1

N

∑
k,σ

[
− 1

π

]
ImGAA(k, 0 + iε)

=
Q

N

∑
k

[δ(µ̃− t̃ |γ(k)|) + δ(µ̃+ t̃ |γ(k)|)]. (48)

The DOS at the Fermi energy N(µ̃) and the chemical
potential µ̃ for −3 ≤ µ̃/t ≤ 1.5 at zero temperature are

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

δ

t 
N

 (
µ~

)

−
3

−
2

−
1

µ~
/t

Fig. 1. Density of electronic states at the Fermi energy tN(µ̃)
(solid blue line, left axis) and the chemical potential µ̃/t
(dashed red line, right axis) versus doping δ.

plotted in Figure 1 for doping 0 ≤ δ ≤ 1. The two peaks
of the DOS correspond to the VHS in two bands. The
DOS is nonsymmetric with respect to µ̃ = 0 in comparison
with the DOS of graphene due to the renormalization of
the hopping parameter in (48), where we use t̃ = tQ =
t (1 + δ)/2 neglecting the electron and spin contributions
in equation (24).

We note that there are misprints in reference [28],
equations (26) and (29) for the GFs, in comparison with
equations (46) and (47), where we have opposite signs.
But the expressions for the correlation functions nAσ(k) =
〈Xσ0

kAX
0σ
kA〉 and 〈Xσ0

kBX
0σ
kA〉 in reference [28] are correct.

3.3 Anomalous Green functions

To calculate the superconducting Tc we use the linearized
approximation for the anomalous GFs (34) and (35). They
are determined by the relations:

FσAA(k, ω) =
QAσ31(k, ω)

[ω2 − ε2
+(k)][ω2 − ε2

−(k)]
, (49)

Aσ31(k, ω) = −∆ABσ(−k) (ω − µ̃) t̃ γ(k)

+ ∆ABσ(k)(ω + µ̃) t̃ γ∗(k)

+ ∆σ (ω2 − µ̃2 − t̃2 |γ(k)|2), (50)

FσAB(k, ω) =
QAσ41(k, ω)

[ω2 − ε2
+(k)][ω2 − ε2

−(k)]
, (51)

Aσ41(k, ω) = ∆ABσ(k)(ω2 − µ̃2)

−∆ABσ(−k) t̃2 γ2(k) + ∆σ 2µ̃ t̃ γ(k). (52)

The corresponding anomalous correlation function
FσBA(k) = 〈X0σ̄

−kBX
0σ
kA〉 in the gap equations (27)
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and (28) determined by the GF (51) is given by

FσBA(k) = − 1

π

∫ ∞
−∞

dω

exp(ω/T ) + 1
ImFσAB(k, ω)

=
Q

ε2
−(k)− ε2

+(k)

{Aσ41(ω = ε+(k))

2ε+(k)
tanh

ε+(k)

2T

−A
σ
41(ω = ε−(k))

2ε−(k)
tanh

ε−(k)

2T

}
. (53)

4 Gap equations and Tc

Let us consider solutions for the gaps of different symme-
tries. In particular, the extended s-wave gap (28) deter-
mined by the bond-independent anomalous correlation
function (53) can be written as:

∆ABσ(k) = ∆ABσ

∑
α

exp[i(kδα] = ∆ABσ γ(k). (54)

The d+ id′-wave pairing is determined by the gap which
has different phases on bonds (Refs. [9,11,15]):

∆ABσ(k) =
∑
α

∆α
σ exp[ikδα], ∆α

σ = ∆1σe
i(2π/3)α. (55)

The numerical solution of the gap equations yields Tc as
a function of doping given below, where we use the renor-
malized hopping parameter t̃ = t (1 + δ)/2 (see Sect. 3.2).
Note that in our mean-field approach in two dimensions,
Tc is the temperature of Cooper-pair formation without
superconducting long-range order (see, e.g., Refs. [2,5]).

It should be pointed out that for the conventional
Fermi-liquid we can have the s-wave pairing on a single
site given by the anomalous correlation function 〈aiσ̄aiσ〉.
In terms of HOs this pairing can be described by the
equation:

〈aiσ̄aiσ〉 = 〈X02
i 〉 = 〈X0σ̄

i X σ̄2
i 〉 6= 0, (56)

which shows that the double occupancy of one lattice site
is permitted but in the two Hubbard subbands. For the
Hubbard model in the limit of strong correlations, i.e., for
the t-J model, this pairing is prohibited due to the no-
double-occupancy restriction which in terms of HOs, as
was proposed in reference [35], can be written as:

〈X0σ̄
i X0σ

i 〉 = 〈aiσ̄(1− ni,σ) aiσ(1− ni,σ̄)〉 ≡ 0. (57)

As shown in Section 4.4, both the k-independent s-wave
pairing with the gap (27) and the extended s-wave pair-
ing with the gap (54) violate this condition and must be
excluded from a rigorous point of view. For the d-pairing
with the gap (55) the condition (57) is fulfilled.

However, in several publications this constraint has
not been rigorously taken into account, for example
using the phenomenological t-J model (see Ref. [9] where
the double-site occupancy is included in the Hilbert
space), or introducing the statistical weighting factors
gt = 2δ/(1 + δ) and gJ = 4/(1 + δ)2 in the t-J model

(see Refs. [3,13]), as discussed in Section 1, or using the
Gutzwiller projector Pg =

∏
i(1 − g ni↑ni↓) with g < 1

treated as variational parameter (see, e.g., Ref. [12]). To
compare our results with these studies we have considered
the k-independent s-wave pairing in Section 4.1 and the
extended s-wave pairing in Section 4.2.

4.1 k-independent s-wave gap equation

For the k-independent s-wave gap (27) we have

∆σ =
2t

Q

∑
l

〈X0σ̄
lBX

0σ
iA 〉

=
2t

QN

∑
α

∑
q

exp[−iqδα]FσBA(q). (58)

Assuming that t � J we can solve the equation for ∆σ

considering the q-dependent part of the gap ∆ABσ(q) in
Aσ41(ω,q) (52) as a small perturbation. We obtain the gap
equation:

∆σ =
∆σ t

N

∑
q

|γ(q)|
[ 1

2ε+(q)
tanh

ε+(q)

2Tc

− 1

2ε−(q)
tanh

ε−(q)

2Tc

]
. (59)

We find a solution for Tc only for hole doping δ ≤ 0.32
when µ̃ > 0. It has a high maximum value, Tc ∼ 0.25t,
due to the strong pairing interaction t� J . Note that the
coupling proportional to the hopping parameter t is due to
the kinematical interaction induced by the commutation
relations (4) for the HOs. The same type of pairing occurs
in the t–J model on the square lattice (see Ref. [35]) which
has been disregarded, since it violates the constraint of
no-double-occupancy (57). As shown in Section 4.4, the
s-wave pairing described by the k-independent gap ∆σ

(58) on the honeycomb lattice also violates the constraint
(57), and in what follows we take the solution ∆σ = 0.

4.2 Extended s-wave gap equation

Using equation (53) the gap equation (28) reads

∆ABσ(k) =
J

2N

∑
q

∑
α

exp[i(k− q)δα]∆ABσ(q)

×
[ 1

2ε+(q)
tanh

ε+(q)

2Tc
+

1

2ε−(q)
tanh

ε−(q)

2Tc

]
− J

N

∑
q

∑
α

exp[i(k− q)δα]
t̃2

4µ̃ t̃|γ(q)|

×
[
∆ABσ(q)|γ(q)|2 −∆ABσ(−q) γ2(q)

]
×
[ 1

2ε+(q)
tanh

ε+(q)

2Tc
− 1

2ε−(q)
tanh

ε−(q)

2Tc

]
. (60)

Taking into account that the second term vanishes for the
bond-independent gap ∆ABσ(k) = ∆ABσ γ(k) because
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of γ(q)|γ(q)|2 − γ∗(q) γ2(q) = 0 , we obtain the gap
equation

γ(k) =
J

2N

∑
q

∑
α

exp[i(k− q)δα]γ(q)

×
[ 1

2ε+(q)
tanh

ε+(q)

2Tc
+

1

2ε−(q)
tanh

ε−(q)

2Tc

]
. (61)

The solution of this equation shows that Tc(δ) linearly
increases with doping and vanishes for large δ depending
on J , e.g., Tc(δ) = 0 at δ > 0.2 for J = t/2. The maxi-
mum value of Tc rapidly increases with the interaction J ,
e.g., Tmax

c = 0.035 t (0.082 t) for J = t/3 ( t/2). Though
the extended s-wave pairing also violates the constraint
of no-double-occupancy (57), we consider it to compare
our results with calculations for the t-J model, where this
restriction has not been rigorously taken into account.

4.3 d-wave gap equation

In the case of d-wave symmetry (d + id′) for the bond-
dependent gap (55) we have the same equation (60). The
direct numerical calculation for this gap reveals that the
second term in the integral gives no contribution. It is
convenient to consider the equation for a particular value
of α for the phase sensitive contribution:

∆α
σ exp[ikδα] = ∆1σe

i(2π/3)α exp[ikδα]

=
J

2N

∑
q

exp[i(k− q)δα]
∑
β

∆1σ e
i(2π/3)β exp[iqδβ ]

×
[ 1

2ε+(q)
tanh

ε+(q)

2Tc
+

1

2ε−(q)
tanh

ε−(q)

2Tc

]
. (62)

Cancelling out the terms ∆1σ exp[ikδα] we write this
equation as

1 =
J

2N

∑
q

∑
β

exp[iq(δβ − δα)]ei(2π/3)(β−α)

×
[ 1

2ε+(q)
tanh

ε+(q)

2Tc
+

1

2ε−(q)
tanh

ε−(q)

2Tc

]
.

(63)

Considering the vectors aβα ≡ δβ − δα we can see that dif-
ferent values of β−α correspond to a set of three vectors,
one is equal to zero, and the other two are the lattice vec-
tors. The change of α rotates the whole set by 2π/3 due to
the C3 symmetry of the lattice so that the above equation
does not depend on α. Therefore, all three equations for
various α are the same. The equation for α = 0 reads:

1 =
J

N

∑
q

1

2

∑
β

exp[i(q(δβ − δ0)]ei(2π/3)β

×
[ 1

2ε+(q)
tanh

ε+(q)

2Tc
+

1

2ε−(q)
tanh

ε−(q)

2Tc

]
. (64)

Fig. 2. Tc(δ) for the d-wave pairing with J = t/3 (dotted
curve) and J = t/2 (bold line).

Fig. 3. Tc(δ) for the d-wave pairing with J = 3t/4 (dotted
curve) and J = t (bold line).

This equation was solved numerically for various values of
J/t. The results for Tc as a function of the hole doping
δ are depicted in Figures 2 and 3. Tc(δ) has a two-peak
structure with the maxima corresponding to the VHS in
the DOS shown in Figure 1.

The transition temperature Tc rapidly increases with
the interaction J/t in equation (64), as was also found in
reference [9]. For small J/t = 1/3 in Figure 2 we get a
smooth increase of Tc with δ and Tc = 0 (or exponentially
small) for δ < 0.05 similar to the d-wave pairing in the
one-band t-J model on the square lattice (see Ref. [33]).
In reference [15] for J/t = 1/3 the superconducting order
at T = 0 was found for 0 < δ < 0.4, but in reference [9]
Tc is exponentially small for δ < 0.05 when J = 0.8 t.
For J = 3 t/4 in Figure 3 the maximum of Tc ≈ 0.15t
is comparable with the maximum value of Tc ≈ 0.1t in
reference [3] for J/t = 0.8 and larger than Tc ≈ 0.05t in
reference [9] for J/t = 0.8. As was claimed in these pub-
lications, such values of Tc with the hopping parameter
t ≈ 2.5 eV in graphene would result in a room high-Tc
SC of electrons on the honeycomb lattice at optimal dop-
ing. The variational Monte Carlo calculation for the RVB
theory in reference [12] shows that Tc can be estimated
as about twice of the room temperature. For small values
of J < Jc = 0.75 t there is no pairing at half-filling for

https://epjb.epj.org/


Eur. Phys. J. B (2019) 92: 135 Page 9 of 10

µ̃ = 0. For large values of J/t a sharp increase of Tc with
δ is found in Figure 3, and for J > Jc Tc is nonzero at
µ̃ = 0. In this region we can observe the gapless SC, as
was also found in reference [5] for the s-wave pairing in
graphene for the nn BCS coupling parameter g1 > gc1.

Taking into account the results of reference [28] for the
t–J model on the honeycomb lattice, where AF long-range
order at T = 0 was observed for δ . 0.1, we argue that the
AF and superconducting ground-state order may coexist
in the range δ . 0.1, in agreement with the numerical
calculations in reference [15].

Let us compare the results for the extended s-wave pair-
ing and d-wave pairing. As was found in Section 4.2, the
maximum value of Tmax

c ≈ 0.082 t for J = t/2 is nearly
the same as in the case of d-wave pairing in Figure 2. It
contradicts to the results of reference [9], where Tc for
the d-wave pairing is much larger than for the extended
s-wave pairing. Note that in reference [9] the mean-field
RVB theory was used, where the restriction of no-double-
occupancy has not been taken into account. On the other
hand, in references [3,13], where the renormalized mean-
field approximation determined by the parameters gt and
gJ for the t-J model was employed, the maximum value
of the order parameter (and Tc) for the extended s-wave
pairing and the d-wave pairing are quite close. So we can
say that accounting for strong correlations both in our
approach and in the renormalized mean-field approxima-
tion results in close maximum values of Tc for the extended
s-wave and d-wave pairing. However, it should be stressed
that the constraint (57) excludes the s-wave pairing. This
conclusion is supported by the calculations for the t-J
model in reference [15], where the projected character of
the electron operators has been implemented and only
d-wave pairing has been found.

4.4 Constraint for the s-wave pairing

Let us consider the restriction of no-double-occupancy
(57) for the Hubbard operators:

〈X0σ̄
iAX

0σ
iA 〉 = 0. (65)

Using the GF FσAA(k, ω) (49) this condition reads

〈X0σ̄
iAX

0σ
iA 〉 =

1

N

∑
k

∫ ∞
−∞

dω

exp(ω/T ) + 1

×
[
− 1

π

]
Im

QAσ31(k, ω)

[ω2 − ε2
+(k)][ω2 − ε2

−(k)]
= 0,

(66)

where the function Aσ31(k, ω) is given by (50). This condi-
tion for the s-wave pairing determined by the gap function
∆σ (27), where Aσ31(ω = ε±(k)) = ∓2∆σ µ̃ t̃ |γ(k)|, results
in the relation:

〈X0σ̄
iAX

0σ
iA 〉 = −Q∆σ

2N

∑
k

[ 1

2ε+(k)
tanh

ε+(k)

2T

+
1

2ε−(k)
tanh

ε−(k)

2T

]
. (67)

The summation over k does not vanish for a positively
defined integrand. Therefore, the s-wave pairing with the
k-independent gap ∆σ violates the kinematic restriction
(66) and is ruled out.

For the extended s-wave pairing with the gap (54)

we have Aσ31(ω = ε±(k)) = 2∆ABσ µ̃ t̃ |γ(k)|2, and the
relation (66) reads:

〈X0σ̄
iAX

0σ
iA 〉 = −Q∆ABσ

2N

∑
k

|γ(k)|
[ 1

2ε+(k)
tanh

ε+(k)

2T

− 1

2ε−(k)
tanh

ε−(k)

2T

]
. (68)

The summation over k does not vanish except for µ̃ = 0
when ε+(k) = −ε−(k). For other doping the correla-
tion function (68) is non-zero that violates the kinematic
restriction (66), and the extended s-wave pairing cannot
be realized.

Finally, let us consider the d-wave pairing with the
bond-dependent gap (55). In this case, for the function
(50) we have

Aσ31(ω = ε±(k)) = 2µ̃ t̃ γ(k)
∑
α

∆α
σ exp[−ikδα]

± t̃2 |γ(k)|
∑
α

∆α
σ 2iIm[γ∗(k) exp(ikδα)], (69)

where the relation γ∗(k) exp(ikδα) − γ(k) exp(−ikδα) =
2i Im(γ∗(k) exp(ikδα)) was used. For the correlation func-
tion (66) we obtain:

〈X0σ
iAX

0σ̄
iA 〉 =

Q

2N

∑
α

∆α
σ

∑
k

γ(k)

|γ(k)|
exp(−ikδα)

×
[ 1

2ε+(k)
tanh

ε+(k)

2T
− 1

2ε−(k)
tanh

ε−(k)

2T

]
+
Q t̃

4µ̃

1

N

∑
k

∑
α

∆α
σ 2i Im[γ∗(k) exp(ikδα)]

×
[ 1

2ε+(k)
tanh

ε+(k)

2T
+

1

2ε−(k)
tanh

ε−(k)

2T

]
. (70)

In the first term the summation over k does not depend
on α due to the C3 symmetry of γ(k) and ε±(k). There-
fore, the summation over α of the gap function ∆α

σ can
be done independently that results in the vanishing of
the first term:

∑
α ∆α

σ = ∆1σ

∑
α exp(i(2π/3)α) = 0. The

second term also gives no contribution due to summation
over k of the odd in k function Im[γ∗(k) exp(ikδα)] =
i
∑
β sin[k(δα − δβ)]. So, the d-wave pairing with the

gap (55) does not violate the condition of no-double-
occupancy (66). This conclusion was checked by the direct
integration over k in equation (70).

5 Conclusion

In this paper a microscopic theory of superconductivity
in electronic systems with strong correlations is pre-
sented within the t-J model on the honeycomb lattice.
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The constraint of no-double-occupancy in the two-band t-
J model is rigorously taken into account by employing
the HO technique. The superconducting Tc as a func-
tion of doping is calculated for the d + id′ gap function.
It reveals a two-peak structure related to the two VHS
in the two-band electronic spectrum. For large values of
J > Jc = 0.75t a gapless superconductivity is found at
µ̃ = 0. It is suggested that for small doping, δ . 0.1, the
AF long-range order found in [28] may coexist with the
d+ id′ superconductivity.

We have also calculated Tc for the extended s-wave pair-
ing to compare it with the results obtained for the t-J
model, where the constraint has been neglected or consid-
ered approximately. In the latter case the results for the
maximum value of Tc are comparable. However, we have
shown that the s-wave pairing violates the constraint and
should be ruled out.

In graphene with the large hopping parameter t ≈
2.5 eV the single-site Coulomb repulsion is not strong
enough, U/t = 4–5 [1]. Therefore, the application of
the t-J model to graphene is questionable. In our the-
ory we have the renormalized hopping parameter t̃ (24)
which is small in the region δ ≤ 0.4, where the nn cor-
relation function C1 ≤ −0.1 [28]. Therefore, we have
U/t̃� 1, and the application of the t-J model can be justi-
fied. Moreover, complicated structures like sulfur-graphite
composites [9] may result in a larger value of U/t, and
high-Tc superconductivity can be achieved.
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