Skip to main content

Advertisement

Log in

Sliding paths for series of Frenkel-Kontorova models – a contribution to the concept of 1D-superlubricity

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Newton trajectories are used to calculate low energy pathways for a series of Frenkel-Kontorova models with 6 and up to 69 particles thus up to a medium chain, and an expedition to 101 particles. The model is a finite chain with free-end boundary conditions. It has two competing potentials and an additional, external force. We optimize stationary structures and calculate the low energy paths between global minimums for a movement of the chain over its on-site potential, if an external tilting by a push- and/or pull direction is applied. We propose to understand a low energy path for a possibility of a superlubricity of the chain. We compare different misfit parameters. The result is that the minimums differ only little, however, the critical length of the chain, Ncr, depends on the misfit parameter. Ncr describes the end of a ‘good’ calculability of the Newton trajectory which follows the low energy pathway of the chain through the potential energy surface, for a movement of the chain along the axis. We discuss reasons for the boundary of an Ncr. However, we assume that the low energy paths exist beyond their calculability by NTs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.M. Braun, Y.S. Kivshar, Phys. Rep. 306, 1 (1998)

    ADS  Google Scholar 

  2. J. Tekić, P. Mali,The ac driven Frenkel-Kontorova model (University of Novi Sad, Novi Sad, 2015)

  3. D. Gangloff, A. Bylinskii, I. Counts, W. Jhe, V. Vuletić, Nat. Phys. 11, 915 (2015)

    Google Scholar 

  4. L. Karpa, A. Bylinskii, D. Gangloff, M. Cetina, V. Vuletić, Phys. Rev. Lett. 111, 163002 (2013)

    ADS  Google Scholar 

  5. O. Braun, A. Naumovets, Surf. Sci. Rep. 60, 79 (2006)

    ADS  Google Scholar 

  6. A. Vanossi, O.M. Braun, J. Phys.: Condens. Matter 19, 305017 (2007)

    Google Scholar 

  7. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988)

    ADS  Google Scholar 

  8. R. Thorne, Phys. Today 1996, 42 (1996)

    Google Scholar 

  9. I. Garcia-Mata, O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. D 41, 325 (2007)

    ADS  Google Scholar 

  10. J.P. Pouget, C.R. Physique 17, 332 (2016)

    ADS  Google Scholar 

  11. O. Braun, T. Dauxois, M.V. Paliy, M. Peyrard, Phys. Rev. B 54, 321 (1996)

    ADS  Google Scholar 

  12. E.G. Ekomasov, R.R. Murtazin, O.B. Bogomazova, A.M. Gumerov, J. Magn. Magn. Mater. 339, 133 (2013)

    ADS  Google Scholar 

  13. L. Trallori, Phys. Rev. B 57, 5923 (1998)

    ADS  Google Scholar 

  14. W. Que, M.B. Walker, Phys. Rev. B 46, 14772 (1992)

    ADS  Google Scholar 

  15. R.C. Dinsmore III, M.H. Bae, A. Bezryadin, Appl. Phys. Lett. 93, 192505 (2008)

    ADS  Google Scholar 

  16. M.H. Bae, R.C. Dinsmore III, T. Aref, M. Brenner, A. Bezryadin, Nano Lett. 9, 1889 (2009)

    ADS  Google Scholar 

  17. R. Besseling, R. Niggebrugge, P.H. Kes, Phys. Rev. Lett. 82, 3144 (1999)

    ADS  Google Scholar 

  18. N. Kokubo, R. Besseling, V.M. Vinokur, P.H. Kes, Phys. Rev. Lett. 88, 247004 (2002)

    ADS  Google Scholar 

  19. O. Iaroshenko, V. Rybalko, V.M. Vinokur, L. Berlyand, Sci. Rep. 3, 1758 (2013)

    ADS  Google Scholar 

  20. O.V. Zhirov, G. Casati, D.L. Shepelyansky, Phys. Rev. E 65, 026220 (2002)

    ADS  Google Scholar 

  21. S. Watanabe, H.S.J. van der Zant, S.H. Strogatz, T.P. Orlando, Physica D 97, 429 (1996)

    ADS  Google Scholar 

  22. A.V. Ustinov, M. Cirillo, B.A. Malomed, Phys. Rev. B 47, 8357 (1993)

    ADS  Google Scholar 

  23. A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, Rev. Mod. Phys. 85, 529 (2013)

    ADS  Google Scholar 

  24. N. Manini, O.M. Braun, E. Tosatti, R. Guerra, A. Vanossi, J. Phys. 28, 134006 (2016)

    Google Scholar 

  25. W. Quapp, J.M. Bofill, Mol. Phys. 117, 1541 (2019)

    ADS  Google Scholar 

  26. W. Quapp, J.M. Bofill, Eur. Phys. J. B 92, 95 (2019)

    ADS  Google Scholar 

  27. W. Quapp, J. Theor. Comput. Chem. 2, 385 (2003)

    Google Scholar 

  28. O.M. Braun, B. Hu, A. Filippov, A. Zeltser, Phys. Rev. E 58, 1311 (1998)

    ADS  Google Scholar 

  29. J. Tekić, D. He, B. Hu, Phys. Rev. E 79, 036604 (2009)

    ADS  Google Scholar 

  30. I. Sokolović, P. Mali, J. Odavić, S. Radosevic, S.Y. Medvedeva, A.E. Botha, Y.M. Shukrinov, J. Tekic, Phys. Rev. E 96, 022210 (2017)

    ADS  MathSciNet  Google Scholar 

  31. M. Weiss, F.J. Elmer, Z. Phys. B: Condens. Matter 69, 55 (1997)

    ADS  Google Scholar 

  32. J. Odavic, P. Malik, J. Tekic, Phys. Rev. E 91, 052904 (2015)

    ADS  Google Scholar 

  33. M. Hirano, K. Shinjo, Phys. Rev. B 41, 11837 (1990)

    ADS  Google Scholar 

  34. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Phys. Rev. Lett. 92, 134301 (2004)

    ADS  Google Scholar 

  35. M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, J.A. Heimberg, H.W. Zandbergen, Phys. Rev. Lett. 92, 126101 (2004)

    ADS  Google Scholar 

  36. E. Gnecco, S. Maier, E. Meyer, J. Phys.: Condens. Matter 20, 354004 (2008)

    Google Scholar 

  37. E. Meyer, E. Gnecco, Friction 2, 106 (2014)

    Google Scholar 

  38. A. Bylinskii, D. Gangloff, V. Vuletić, Science 348, 1115 (2015)

    ADS  Google Scholar 

  39. O.M. Braun, Surf. Sci. 230, 262 (1990)

    ADS  Google Scholar 

  40. S.R. Sharma, B. Bergersen, B. Joos, Phys. Rev. B 29, 6335 (1984)

    ADS  Google Scholar 

  41. Y. Braiman, J. Baumgarten, J. Jortner, J. Klafter, Phys. Rev. Lett. 65, 2398 (1990)

    ADS  Google Scholar 

  42. S.L. Shumway, J.P. Sethna, Phys. Rev. Lett. 67, 995 (1991)

    ADS  Google Scholar 

  43. C. Baesens, R.S. MacKay, Nonlinearity 11, 949 (1998)

    ADS  MathSciNet  Google Scholar 

  44. T. Strunz, F.J. Elmer, Phys. Rev. E 58, 1601 (1998)

    ADS  Google Scholar 

  45. N. Theodorakopoulos, M. Peyrard, R.S. MacKay, Phys. Rev. Lett. 93, 258101 (2004)

    ADS  Google Scholar 

  46. I.D. Mikheikin, M.Y. Kuznetsov, E.V. Makhonina, V.S. Pervov, J. Mater. Synth. Process. 10, 53 (2002)

    Google Scholar 

  47. A. Bylinskii, D. Gangloff, I. Counts, V. Vuletić, Nat. Mater. 15, 717 (2016)

    ADS  Google Scholar 

  48. P. Bak, Rep. Prog. Phys. 45, 587 (1982)

    ADS  Google Scholar 

  49. C. Baesens, R.S. MacKay, Nonlinearity 17, 567 (2004)

    ADS  MathSciNet  Google Scholar 

  50. Z. Zheng, B. Hu, G. Hu, Phys. Rev. B 58, 5453 (1998)

    ADS  Google Scholar 

  51. O.M. Braun, A.R. Bishop, J. Röder, Phys. Rev. Lett. 79, 3692 (1997)

    ADS  Google Scholar 

  52. O.M. Braun, H. Zhang, B. Hu, J. Tekic, Phys. Rev. E 67, 06602 (2003)

    Google Scholar 

  53. A.B. Kolton, D. Dominguez, N. Gronbech-Jensen, Phys. Rev. Lett. 86, 4112 (2001)

    ADS  Google Scholar 

  54. B. Hu, J.Y. Zhu, Phys. Rev. E 65, 016202 (2001)

    ADS  Google Scholar 

  55. S. Slijepčević, Chaos 25, 083108 (2015)

    ADS  MathSciNet  Google Scholar 

  56. J. Odavic, P. Malik, J. Tekic, M. Pantic, M. Pavkov-Hrvojevic, Commun. Nonlinear Sci. Numer. Simul. 47, 100 (2017)

    ADS  MathSciNet  Google Scholar 

  57. H. Li, S. Liu, Discrete Dyn. Nat. Soc. 47, 7081804 (2018)

    Google Scholar 

  58. O. Braun, T. Dauxois, M. Paliy, M. Peyrard, B. Hu, Physica D 123, 357 (1998)

    ADS  Google Scholar 

  59. W. Quapp, M. Hirsch, O. Imig, D. Heidrich, J. Comput. Chem. 19, 1087 (1998)

    Google Scholar 

  60. W. Quapp, M. Hirsch, D. Heidrich, Theor. Chem. Acc. 100, 285 (1998)

    Google Scholar 

  61. J.M. Bofill, J.M. Anglada, Theor. Chem. Acc. 105, 463 (2001)

    Google Scholar 

  62. R. Crehuet, J.M. Bofill, J.M. Anglada, Theor. Chem. Acc. 107, 130 (2002)

    Google Scholar 

  63. W. Quapp, J.M. Bofill, Theor. Chem. Acc. 135, 113 (2016)

    Google Scholar 

  64. W. Quapp, J.M. Bofill, J. Ribas-Ariño, J. Phys. Chem. A 121, 2820 (2017)

    Google Scholar 

  65. M. Hirsch, W. Quapp, J. Molec. Struct. Theochem 683, 1 (2004)

    Google Scholar 

  66. M. Weiss, F.J. Elmer, Phys. Rev. B 53, 7539 (1996)

    ADS  Google Scholar 

  67. S. Slijepčević, Nonlinearity 26, 2051 (2013)

    ADS  MathSciNet  Google Scholar 

  68. J. Kiethe, R. Nigmatullin, D. Kalincev, T. Schmirander, T.E. Mehlstäubler, Nat. Commun. 8, 15364 (2017)

    ADS  Google Scholar 

  69. T.S. van Erp, Frenkel-Kontorova models on quasi periodic potentials, Master’s Thesis, 1999

  70. A. Vanossi, N. Manini, E. Tosatti, Proc. Natl. Acad. Sci. 109, 16429 (2012)

    ADS  Google Scholar 

  71. S.N. Coppersmith, Phys. Rev. A 36, 3375 (1987)

    ADS  MathSciNet  Google Scholar 

  72. A. Benassi, M. Ma, M. Urbakh, A. Vanossi, Sci. Rep. 5, 16134 (2015)

    ADS  Google Scholar 

  73. M. Ma, A. Benassi, A. Vanossi, M. Urbakh, Phys. Rev. Lett. 114, 055501 (2015)

    ADS  Google Scholar 

  74. L.M. Floria, J.J. Mazo, Adv. Phys. 45, 505 (1996)

    ADS  Google Scholar 

  75. A. Sadeghi, Phys. Rev. B 98, 075407 (2018)

    ADS  Google Scholar 

  76. S.V. Dmitriev, L.V. Nauman, A.M. Wusatowska-Sarnek, M.D. Starostenkov, Phys. Status Solidi B 201, 89 (1997)

    ADS  Google Scholar 

  77. J. Zhang, X. Chen, R. Chen, L. Nie, Z. Zheng, Eur. Phys. J. B 87, 122 (2014)

    ADS  Google Scholar 

  78. T. Hu, K. Hu, Y. Tang, Physica B 405, 4407 (2010)

    ADS  Google Scholar 

  79. F. Martinez-Pedrero, P. Tierno, T.H. Johansen, A.V. Straube, Sci. Rep. 6, 19932 (2016)

    ADS  Google Scholar 

  80. T. Pruttivarasin, M. Ramm, I. Talukdar, A. Kreuter, H. Haeffner, New J. Phys. 13, 075012 (2011)

    ADS  Google Scholar 

  81. C.L. Wang, W.S. Duan, Y. Yang, J.M. Chen, Commun. Theor. Phys. (Beijing, China) 54, 112 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Quapp.

Additional information

Supplementary material in the form of one zip file available from the Journal web page at https://doi.org/10.1140/epjb/e2019-100198-0

Electronic supplementary material

Supplementary data

ZIP file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quapp, W., Bofill, J.M. Sliding paths for series of Frenkel-Kontorova models – a contribution to the concept of 1D-superlubricity. Eur. Phys. J. B 92, 193 (2019). https://doi.org/10.1140/epjb/e2019-100198-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100198-0

Keywords

Navigation