Skip to main content
Log in

Lowest frequency mode in Raman susceptibility: 2-propanol from ambient to supercritical condition

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report the first observation of the low-frequency Raman spectra of 2-propanol from ambient to supercritical condition. Phenomenological analysis is applied to the reduced Raman spectra. The low-frequency component is decomposed into two components: the lowest mode represented by a MRT(multiple random telegraph) model and the 2nd mode represented by a modified Gaussian. Only the characteristic time of the lowest mode sensitively depends on density and decreases with increasing density. The integrated intensity of each mode is proportional to the density.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kinoshita, Y. Kai, M. Yamaguchi, T. Yagi, Phys. Rev. Lett. 75, 148 (1995)

    Article  ADS  Google Scholar 

  2. S. Kinoshita, Y. Kai, M. Yamaguchi, T. Yagi, Chem. Phys. Lett. 236, 259 (1995)

    Article  ADS  Google Scholar 

  3. G. Brinbaum,Phenomena Induced by Intermolecular Interactions (Plenum Press, New York, 1985)

  4. G.C. Tabisz, M.N. Neuman,Collision- and Interacion-Induced Spectroscopy (Kluwer Academic Pulishers, Dordrecht, 1995)

  5. R. Biswas, A. Das, H. Shirota, J. Chem. Phys. 141, 134506 (2014)

    Article  ADS  Google Scholar 

  6. S. Kakinuma, H. Shirota, J. Phys. Chem. B 122, 6033 (2018)

    Article  Google Scholar 

  7. N. Nishi, K. Koga, C. Ohshima, K. Yamamoto, U. Nagashima, K. Nagami, J. Am. Chem. Soc. 110, 5426 (1988)

    Article  Google Scholar 

  8. K. Mizoguchi, Y. Hori, Y. Tominaga, J. Chem. Phys. 97, 1961 (1992)

    Article  ADS  Google Scholar 

  9. Y. Amo, Y. Tominaga, J. Chem. Phys. 109, 3994 (1998)

    Article  ADS  Google Scholar 

  10. Y. Amo, Y. Tominaga, Physica A 276, 401 (2000)

    Article  ADS  Google Scholar 

  11. R. Böhmer, C. Gainaru, R. Richert, Phys. Rep. 125, 545 (2014)

    Google Scholar 

  12. J. Watanabe, Y. Watanabe, S. Kinoshita, Chem. Phys. Lett. 333, 113 (2001)

    Article  ADS  Google Scholar 

  13. G.E. Walrafen, Y.C. Chu, G.J. Piermarini, J. Phys. Chem. 100, 10363 (1996)

    Article  Google Scholar 

  14. B.K.P. Scaife,Principles of Dielectrics (Oxford University Press, Oxford, 1989)

  15. F. Shibata, C. Uchiyama, K. Maruyama, Physica A 161, 42 (1989)

    Article  ADS  Google Scholar 

  16. Y. Amo, Y. Kameda, T. Usuki, AIP Adv. 6, 055319 (2016)

    Article  ADS  Google Scholar 

  17. M. Ban, S. Kitajima, K. Maruyama, F. Shibata, Phys. Lett. A 372, 351 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Ricci, P. Bartolini, R. Chelli, G. Cardini, S. Califano, R. Righini, Phys. Chem. Chem. Phys. 3, 2795 (2001)

    Article  Google Scholar 

  19. F. Palombo, P. Sassi, M. Paolantoni, C. Barontini, A. Morresi, M.G. Giorgini, J. Phys. Chem. B 118, 215 (2014)

    Article  Google Scholar 

  20. S. Kakinuma, S. Ramati, J.F. Wishart, H. Shirota, J. Chem. Phys. 148, 193805 (2018)

    Article  ADS  Google Scholar 

  21. B. Schmidtke, N. Petzold, B. Pötzschner, H. Weingärtner, E.A. Rössler, J. Phys. Chem. B 118, 7108 (2014)

    Article  Google Scholar 

  22. Q. Zhong, J.T. Fourkas, J. Phys. Chem. B 112, 15342 (2008)

    Article  Google Scholar 

  23. T. Hasegawa, Y. Tanimura, J. Phys. Chem. B 115, 5545 (2011)

    Article  Google Scholar 

  24. J. Martí, J.A. Padró, E. Guàrdia, J. Mol. Liq. 64, 1 (1995)

    Article  Google Scholar 

  25. M.C.C. Ribeiro, J. Chem. Phys. 134, 244507 (2011)

    Article  ADS  Google Scholar 

  26. D. Sidler, M. Meuwly, P. Hamm, J. Chem. Phys. 148, 244504 (2018)

    Article  ADS  Google Scholar 

  27. H. Yada, M. Nagai, K. Tanaka, Chem. Phys. Lett. 473, 279 (2009)

    Article  ADS  Google Scholar 

  28. M. Hou, A. Yu, R. Lu, J. Raman Spectr. 48, 108 (2016)

    Article  ADS  Google Scholar 

  29. Y.J. Chang, E.W. Castner jr., J. Phys. Chem. 100, 3330 (1996)

    Article  Google Scholar 

  30. T. Bancewicz, A. Kamiński, J. Mol. Liq. 146, 35 (2009)

    Article  Google Scholar 

  31. G. Knopp, P. Radi, M. tulej, T. Gerber, P. Beaud, J. Chem. Phys. 118, 8223 (2003)

    Article  ADS  Google Scholar 

  32. G.C. Schatz, M.A. Ratner,Quantum Mechanics in Chemistry, (Prentice Hall, USA 1993)

  33. G.-Z. Jia, Q. Jie, W. Feng, J. Mol. Struct. 1100, 354 (2015)

    Article  ADS  Google Scholar 

  34. Y. Amo, Y. Tominaga, Physica A 265, 410 (1999)

    Article  ADS  Google Scholar 

  35. J. Watanabe, M. Watanabe, S. Kinoshita, Phys. Rev. B 74, 132105 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Yuko Amo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amo, Y., Sato, T.H., Kameda, Y. et al. Lowest frequency mode in Raman susceptibility: 2-propanol from ambient to supercritical condition. Eur. Phys. J. B 93, 6 (2020). https://doi.org/10.1140/epjb/e2019-100145-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100145-1

Keywords

Navigation