Skip to main content
Log in

The structural transition under densification and the relationship between structure and density of silica glass

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The structure of silica glass (SiO2) at different densities and at temperatures of 500 K is investigated by molecular dynamics simulation. Results reveal that at density of 3.317 g/cm3, the structure of silica glass mainly comprises two phases: SiO4- and SiO5-phases. With the increase of density, the structure tends to transform from SiO4-phase into SiO6-phase. At density of 3.582 g/cm3, the structure comprises three phases: SiO4- , SiO5-, and SiO6-phases, however, the SiO5- phase is dominant. At higher density (3.994 g/cm3), the structure mainly consists of two main phases: SiO5- and SiO6-phases. In the SiO4-phase, the SiO4 units mainly link to each other via corner-sharing bonds. In the SiO5-phase, the SiO5 units link to each other via both corner- and edge-sharing bonds. For SiO6-phase, the SiO6 units can link to each other via corner-, edge-, and face-sharing bonds. The SiO4-, SiO5-, and SiO6-phases form SiO4- SiO5- and SiO6-grains respectively and they are not distributed uniformly in model. This results in the polymorphism in the silica glass at high density.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Oganov, M.J. Gillan, G. David Price, Phys. Rev. B 71, 064104 (2005)

    ADS  Google Scholar 

  2. V.P. Prakapenka, G. Shen, L.S. Dubrovinsky, M.L. Rivers, S.R. Sutton, J. Phys. Chem. Solids 65, 1537 (2004)

    ADS  Google Scholar 

  3. R. Vuilleumier, N. Sator, B. Guillot, Geochim. Cosmochim. Acta 73, 6313 (2009)

    ADS  Google Scholar 

  4. T. Tsuchiya, J. Tsuchiya, Proc. Natl. Acad. Sci. 108, 4 (2011)

    Google Scholar 

  5. J. Geske, B. Drossel, M. Vogel, AIP Adv. 6, 035131 (2016)

    ADS  Google Scholar 

  6. D.M. Teter, R.J. Hemley, G. Kresse, J. Hafner, Phys. Rev. Lett. 80, 2145 (1998)

    ADS  Google Scholar 

  7. B.B. Karki, B. Dipesh, L. Stixrude, Phys. Rev. B 76, 104205 (2007)

    ADS  Google Scholar 

  8. C. Prescher et al., Proc. Natl. Acad. Sci. 83, 10041 (2017)

    Google Scholar 

  9. P.K. Hung, N.V. Hong, Eur. Phys. J. B 71, 105 (2009)

    ADS  Google Scholar 

  10. L.T. San, N.V. Hong, P.K. Hung, High Pressure Res. 36, 187 (2016)

    ADS  Google Scholar 

  11. P.K. Hung, N.V. Hong, L.T. Vinh, J. Phys.: Condens. Matter 19, 466103 (2007)

    ADS  Google Scholar 

  12. Q. Mei, C.J. Benmore, J.K.R. Weber, Phys. Rev. Lett. 98, 057802 (2007)

    ADS  Google Scholar 

  13. R.L. Mozzi, B.E. Warren, J. Appl. Cryst. 2, 164 (1969)

    Google Scholar 

  14. D.I. Grimley, A.C. Wright, J. Non-Cryst. Solids 119, 49 (1990)

    ADS  Google Scholar 

  15. A.C. Wright, J. Non-Cryst. Solids 179, 84 (1994)

    ADS  Google Scholar 

  16. P.F. Mcmillan, B.T. Poe, Ph. Gillet, B. Reynard, Geochim. Cosmochim. Acta 58, 3653 (1994)

    ADS  Google Scholar 

  17. R.G. Della Valle, H.C. Andersen, J. Phys. Chem. 97, 2682 (1992)

    Google Scholar 

  18. S. Munetoh, T. Motooka, K. Moriguchi, A. Shintani, Comput. Mater. Sci. 39, 334 (2007)

    Google Scholar 

  19. A. Kerrache, V. Teboul, A. Monteil, Chem. Phys. 321, 69 (2006)

    Google Scholar 

  20. A. Takada, P. Richet, C.R.A. Catlow, G.D. Price, J. Non-Cryst. Solids 345–346, 224 (2004)

    ADS  Google Scholar 

  21. P.H. Poole, M. Hemmati, C.A. Angell, Phys. Rev. Lett. 79, 2281 (1997)

    ADS  Google Scholar 

  22. I. Saika-Voivod, F. Sciortino, P.H. Poole, Phys. Rev. E 63, 011202 (2000)

    ADS  Google Scholar 

  23. T. Sato, N. Funamori, Phys. Rev. Lett. 101, 255502 (2008)

    ADS  Google Scholar 

  24. T. Sato, N. Funamori, Phys. Rev. B 82, 184102 (2010)

    ADS  Google Scholar 

  25. J. Sarnthein, A. Pasquarello, R. Car, Phys. Rev. B 52, 12690 (1995)

    ADS  Google Scholar 

  26. A. Trave, P. Tangney, S. Scandolo, A. Pasquarello, R. Car, Phys. Rev. Lett. 89, 245504 (2002)

    ADS  Google Scholar 

  27. A. Takada, J. Non-Cryst. Solids 499, 309 (2018)

    ADS  Google Scholar 

  28. J.R. Rustad, D.A. Yuen, Phys. Rev. B 44, 2108 (1991)

    ADS  Google Scholar 

  29. P.K. Hung, L.T. Vinh, T. Ba Van, N.V. Hong, N.V. Yen, J. Non-Cryst. Solids 462, 1 (2017)

    ADS  Google Scholar 

  30. L.S. Dubrovinsky, N.A. Dubrovinskaya, S.K. Saxena, F. Tutti, S. Rekhi, T.L. Bihan, G. Shen, J. Hu, Chem. Phys. Lett. 333, 264 (2001)

    ADS  Google Scholar 

  31. D. Andrault, G. Fiquet, F. Guyot, M. Hanfland, Science 282, 720 (1998)

    ADS  Google Scholar 

  32. D. Andrault, R.J. Angel, J.L. Mosenfelder, T.L. Bihan, Am. Miner. 88, 301 (2003)

    ADS  Google Scholar 

  33. I. Saika-Voivod, F. Sciortino, T. Grande, P.H. Poole, Phys. Rev. E 70, 061507 (2004)

    ADS  Google Scholar 

  34. I. Saika-Voivod, F. Sciortino, P.H. Poole, Phys. Rev. E 63, 011202 (2001)

    ADS  Google Scholar 

  35. D.J. Lacks, Phys. Rev. Lett. 84, 4629 (2000)

    ADS  Google Scholar 

  36. O. Mishima, L.D. Calvert, E. Whalley, Nature 314, 76 (1985)

    ADS  Google Scholar 

  37. O. Mishima, K. Takemura, K. Aoki, Science 254, 406 (1991)

    ADS  Google Scholar 

  38. O. Mishima, J. Chem. Phys. 100, 5910 (1994)

    ADS  Google Scholar 

  39. K. Winkel, M.S. Elsaesser, E. Mayer, T. Loerting, J. Chem. Phys. 128, 044510 (2008)

    ADS  Google Scholar 

  40. T. Loerting, N. Giovambattista, J. Phys.: Condens. Matter 18, R919 (2006)

    ADS  Google Scholar 

  41. P. Gallo et al., Chem. Rev. 116, 7463 (2016)

    Google Scholar 

  42. M. Grimsditch, Phys. Rev. Lett. 52, 2379 (1984)

    ADS  Google Scholar 

  43. R.J. Hemley, H.K. Mao, P.M. Bell, B.O. Mysen, Phys. Rev. Lett. 57, 747 (1986)

    ADS  Google Scholar 

  44. E. Lascaris, M. Hemmati, S.V. Buldyrev, H. Eugene Stanley, C. Austen Angell, J. Chem. Phys. 140, 224502 (2014)

    ADS  Google Scholar 

  45. E. Lascaris, Phys. Rev. Lett. 116, 125701 (2016)

    ADS  Google Scholar 

  46. R. Chen, E. Lascaris, J.C. Palmer, J. Chem. Phys. 146, 234503 (2017)

    ADS  Google Scholar 

  47. M.S. Somayazulu et al., J. Phys.: Condens. Matter 5, 6345 (1993)

    ADS  Google Scholar 

  48. J.S. Tse, D.D. Klug, Y. LePage, Phys. Rev. B 46, 5933 (1992)

    ADS  Google Scholar 

  49. W. Jin, R.K. Kalia, P. Vashishta, J.P. Rino, Phys. Rev. Lett. 71, 3146 (1993)

    ADS  Google Scholar 

  50. N.V. Hong, M.T. Lan, N.T. Nhan, P.K. Hung, Appl. Phys. Lett. 102, 191908 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Vinh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, N.V., Vinh, L.T., Hung, P.K. et al. The structural transition under densification and the relationship between structure and density of silica glass. Eur. Phys. J. B 92, 183 (2019). https://doi.org/10.1140/epjb/e2019-100137-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100137-7

Keywords

Navigation