Skip to main content
Log in

Excess conductivity in nano-carbon doped MgB2 superconductor

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this research, the excess conductivity in 5 wt% nano-carbon doped MgB2 superconductor was systematically studied as a function of magnetic fieldby measurements of the resistivity. The mean field temperature was calculated using two different methods. Two- and three-dimensional (2D and 3D) models were used to scale the excess conductivity caused by fluctuations. The mean field of the coherence length for the sample was obtained by using the Aslamazo–Lockerian model in the region of critical temperature. A transition from the 2D to the 3D region was observed in different fields at a crossover temperature as the temperature increased. The crossover temperatures were obtained by using the Maki-Thompson–Lawrence-Doniach (MT–LD) model. The results show that the crossover temperature decreases as the field increases. The phase-relaxation time of the fluctuation pairs was obtained by using the crossover temperature. The fluctuation pair lifetime, τϕ, and the coherence length were obtained by using the transition temperature and the reduced temperature crossover values as functions of magnetic field. The phase-relaxation time decreases with increasing field. It was found that the excess conductivity has 2D dimensionality behavior due to the Cooper pairs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, Phys. Rev. Lett. 86, 4656 (2001)

    Article  ADS  Google Scholar 

  2. J.M. An, W.E. Pickett, Phys. Rev. Lett. 86, 4366 (2001)

    Article  ADS  Google Scholar 

  3. S.H. Han, P. Lunqvist, Ö. Rapp, Physica C 282–287, 1571 (1997)

    Article  Google Scholar 

  4. T. Park, M.B. Salamon, C.U. Jung, M.S. Park, K. Kim, S.I. Lee, Phys. Rev. B 66, 1345151 (2002)

    Google Scholar 

  5. S. Rajput, S. Chaudhary, J. Mater. 2013, 1 (2013)

    Article  Google Scholar 

  6. A.S. Sidorenko, L.R. Tagirov, A.N. Rossolenko, J. Exp. Theor. Phys. Lett. 76, 17 (2002)

    Article  Google Scholar 

  7. Y. Slimani, E. Hannachi, M. Zouaoui, F.B. Azzouz, M.B. Salem, J. Supercond. Nov. Magn. 31, 2339 (2018)

    Article  Google Scholar 

  8. Z. Hol’anová, J. Kacmarcik, P. Szabo, Physica C 404, 195 (2004)

    Article  ADS  Google Scholar 

  9. T. Masui, S. Lee, S. Tajima, Physica C 383, 299 (2003)

    Article  ADS  Google Scholar 

  10. T. Ishiguro, K. Yamaji, G. Saito, Superconductors (Springer, Berlin, 1998)

  11. A.L. Solovjov, V.M. Dmitriev, H.U. Habermeier, I.E. Trofimov, Phys. Rev. B 55, 8551 (1997)

    Article  ADS  Google Scholar 

  12. L.G. Aslamazov, A.I. Larkin, Phys. Lett. A 26, 238 (1968)

    Article  ADS  Google Scholar 

  13. R.S. Thompson, Phys. Rev. B 1, 327 (1970)

    Article  ADS  Google Scholar 

  14. K. Maki, Prog. Theor. Phys. 39, 897 (1968)

    Article  ADS  Google Scholar 

  15. W.E. Lawrence, S. Doniach, in Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, 1970, edited by E. Kanda (Academic Press Japan, Kyoto, 1971), p. 361

  16. S. Hikami, A.I. Larkin, Mod. Phys. Lett. B 2, 693 (1988)

    Article  ADS  Google Scholar 

  17. P.A. Lee, S.R. Shenoy, Phys. Rev. Lett. 28, 1025 (1972)

    Article  ADS  Google Scholar 

  18. G.J. Ruggery, D.J. Thouless, J. Phys. F 6, 2063 (1976)

    Article  ADS  Google Scholar 

  19. D.J. Thouless, Phys. Rev. Lett. 34, 946 (1975)

    Article  ADS  Google Scholar 

  20. A.J. Bray, Phys. Rev. B 9, 4752 (1974)

    Article  ADS  Google Scholar 

  21. S. Ullah, T. Dorsey, Phys. Rev. Lett. 65, 2066 (1990)

    Article  ADS  Google Scholar 

  22. M. Ausloos, C. Laurent, S.K. Patapis, C. Politis, H.L. Luo, P.A. Godelaine, F. Gillet, A. Dang, R. Cloots, Physica B 83, 355 (1991)

    Google Scholar 

  23. J.H. Kim, S.X. Dou, M.S.A. Hossain, X. Xu, J.L. Wang, D.Q. Shi, T. Nakane, H. Kumakura, Supercond. Sci. Technol. 20, 715 (2007)

    Article  ADS  Google Scholar 

  24. A. Esmaeili, H. Sedghi, J. Alloys Compd. 29, 537 (2012)

    Google Scholar 

  25. A.K. Ghosh, S.K. Bandyopadhyay, A.N. Basu, J. Appl. Phys. 86, 3247 (1999)

    Article  ADS  Google Scholar 

  26. P. Konsin, B. Sorkin, M. Ausloos, Supercond. Sci. Technol. 11, 1 (1998)

    Article  ADS  Google Scholar 

  27. B.K. Godwal, P. Modak, A.K. Verma, D.M. Gaitonde, R.S. Rao, Curr. Sci. 85, 1050 (2003)

    Google Scholar 

  28. Y.B. Xie, Phys. Rev. B 46, 997 (1992)

    Google Scholar 

  29. S.R. Ghorbani, X.L. Wang, J. Supercond. Nov. Mag. 31, 2349 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaban Reza Ghorbani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostamabadi, E., Ghorbani, S.R. & Wang, X. Excess conductivity in nano-carbon doped MgB2 superconductor. Eur. Phys. J. B 92, 94 (2019). https://doi.org/10.1140/epjb/e2019-100063-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100063-8

Keywords

Navigation