Skip to main content
Log in

Steady-state probability characteristics of Verhulst and Hongler models with multiplicative white Poisson noise

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on recently obtained from Kolmogorov–Feller equation exact analytical results for the steady-state probability density function of nonlinear dynamical systems driven by white Poisson noise with exponentially distributed amplitudes of pulses we analyze some models of ecology and genetics. Specifically, we find the steady-state probability distribution of the population density in the framework of well-known Verhulst equation with fluctuating population mortality in the form of Poisson sequence with unipolar pulses, leading to an abrupt decrease in population density at random times. As shown, the most probable value of the population density tends to zero with increasing the mean rate of pulses, that is, to an extinction of biological population in perspective. Further, we consider the stochastic Hongler equation which can serve as an approximate model of genetic selection. In the case of multiplicative white Poisson noise having bipolar exponentially distributed amplitudes of pulses we observe noise-induced transition to bimodality (through the trimodal phase) in the steady-state probability distribution with an increase in the mean frequency of pulses. We also discovered a new phenomenon, namely, a direct transition from unimodality to trimodality with a change in the noise intensity, which could not be detected in the framework of the Gaussian perturbation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.V. Gnedenko,The Theory of Probability (MIR Publishers, Moscow, 1969)

  2. C. Van den Broeck, J. Stat. Phys. 31, 467 (1983)

    Article  ADS  Google Scholar 

  3. J.M. Sancho, M. San Miguel, L. Pesquera, M.A. Rodriguez, Physica A 142, 532 (1987)

    Article  ADS  Google Scholar 

  4. J. Łuczka, R. Bartussek, P. Hänggi, Europhys. Lett. 31, 431 (1995)

    Article  ADS  Google Scholar 

  5. R. Zygadło, Phys. Lett. A 329, 459 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Daly, A. Porporato, Phys. Rev. E 73, 026108 (2006)

    Article  ADS  Google Scholar 

  7. A.A. Dubkov, O.V. Rudenko, S.N. Gurbatov, Phys. Rev. E 93, 062125 (2016)

    Article  ADS  Google Scholar 

  8. O.V. Rudenko, A.A. Dubkov, S.N. Gurbatov, Dokl. Math. 94, 476 (2016)

    Article  MathSciNet  Google Scholar 

  9. A.A. Dubkov, B. Spagnolo, Fluct. Noise Lett. 5, L267 (2005)

    Article  Google Scholar 

  10. V.I. Klyatskin,Dynamics of Stochastic Systems (Amsterdam, Netherlands. Elsevier, 2005)

  11. D.R. Cox, V. Isham, Adv. Appl. Prob. 18, 558 (1986)

    Article  Google Scholar 

  12. J.M.G. Vilar, J.M. Rubi, Sci. Rep. 8, 887 (2018)

    Article  ADS  Google Scholar 

  13. R. Zygadło, Phys. Rev. E 54, 5964 (1996)

    Article  ADS  Google Scholar 

  14. R. Zygadło, Phys. Rev. E 77, 021130 (2008)

    Article  ADS  Google Scholar 

  15. A. Dubkov, Acta Phys. Pol. B 43, 935 (2012)

    Google Scholar 

  16. A.A. Dubkov, B. Spagnolo, Eur. Phys. J. B 65, 361 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Bologna, H. Calisto, Eur. Phys. J. B 83, 409 (2011)

    Article  ADS  Google Scholar 

  18. A.A. Dubkov, A.A. Kharcheva, Phys. Rev. E 89, 052146 (2014)

    Article  ADS  Google Scholar 

  19. W. Horsthemke, R. Lefever,Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (Springer-Verlag, Berlin, 1984)

  20. M.O. Hongler, Helv. Phys. Acta 52, 280 (1979)

    MathSciNet  Google Scholar 

  21. O.A. Chichigina, A.A. Dubkov, D. Valenti, B. Spagnolo, Phys. Rev. E 84, 021134 (2011)

    Article  ADS  Google Scholar 

  22. M. Abramowitz, I.A. Stegun,Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover Publications, Inc., New York, 1972)

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.A. Dubkov performed most of the calculations and wrote the manuscript. A.A. Kharcheva helped with calculations, graphing, discussing the results obtained and revising the manuscript.

Corresponding author

Correspondence to Alexander A. Dubkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubkov, A.A., Kharcheva, A.A. Steady-state probability characteristics of Verhulst and Hongler models with multiplicative white Poisson noise. Eur. Phys. J. B 92, 222 (2019). https://doi.org/10.1140/epjb/e2019-100020-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100020-1

Keywords

Navigation