Skip to main content
Log in

Instability caused by the fermion–fermion interactions combined with rotational and particle-hole asymmetries in three-dimensional materials with quadratic band touching

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the role of four-fermion interactions, rotational and particle-hole asymmetries, and their interplay in three-dimensional systems with a quadratic band touching point by virtue of the renormalization group approach, which allows to treat all these facets unbiasedly. The coupled flow evolutions of interaction parameters are derived by taking into account one-loop corrections in order to explore the behaviors of low-energy states. We find four-fermion interaction can drive Gaussian fixed points to be unstable in the low-energy regime. In addition, the rotational and particle-hole asymmetries, together with the fermion–fermion interactions conspire to split the trajectories of distinct types of fermionic couplings and induce superconductivity instability with appropriate starting conditions. Furthermore, we present the schematic phase diagrams in the parameter space, showing the overall behaviors of states in the low-energy regime caused by both fermionic interactions and asymmetries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.D. Chong, X.-G. Wen, M. Soljacić, Phys. Rev. B 77, 235125 (2008)

    Article  ADS  Google Scholar 

  2. K. Sun, E. Fradkin, Phys. Rev. B 78, 245122 (2008)

    Article  ADS  Google Scholar 

  3. K. Sun, H. Yao, E. Fradkin, S.A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009)

    Article  ADS  Google Scholar 

  4. V. Cvetković, R.E. Throckmorton, O. Vafek, Phys. Rev. B 86, 075467 (2012)

    Article  ADS  Google Scholar 

  5. J.M. Murray, O. Vafek, Phys. Rev. B 89, 201110(R) (2014)

    Article  ADS  Google Scholar 

  6. J.M. Murray, O. Vafek, L. Balents, Phys. Rev. B 92, 035137 (2015)

    Article  ADS  Google Scholar 

  7. I.F. Herbut, Phys. Rev. B 85, 085304 (2012)

    Article  ADS  Google Scholar 

  8. I.F. Herbut, L. Janssen, Phys. Rev. Lett. 113, 106401 (2014)

    Article  ADS  Google Scholar 

  9. L. Janssen, I.F. Herbut, Phys. Rev. B 89, 205403 (2014)

    Article  ADS  Google Scholar 

  10. L. Janssen, I.F. Herbut, Phys. Rev. B 92, 045117 (2015)

    Article  ADS  Google Scholar 

  11. I. Boettcher, I.F. Herbut, Phys. Rev. B 93, 205138 (2016)

    Article  ADS  Google Scholar 

  12. L. Janssen, I.F. Herbut, Phys. Rev. B 95, 075101 (2017)

    Article  ADS  Google Scholar 

  13. I. Boettcher, I.F. Herbut, Phys. Rev. B 95, 075149 (2017)

    Article  ADS  Google Scholar 

  14. R.M. Nandkishore, S.A. Parameswaran, Phys. Rev. B 95, 205106 (2017)

    Article  ADS  Google Scholar 

  15. I. Mandal, R.M. Nandkishore, Phys. Rev. B 97, 125121 (2018)

    Article  ADS  Google Scholar 

  16. Y.-P. Lin, R.M. Nandkishore, Phys. Rev. B 97, 134521 (2018)

    Article  ADS  Google Scholar 

  17. I. Mandal, Ann. Phys. 392, 179 (2018)

    Article  ADS  Google Scholar 

  18. A. Altland, B. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2006)

  19. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  20. J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 78, 045405 (2008)

    Article  ADS  Google Scholar 

  21. R. Nandkishore, L. Levitov, Phys. Rev. B 82, 115124 (2010)

    Article  ADS  Google Scholar 

  22. F. Zhang, J. Jung, G.A. Fiete, Q. Niu, A.H. MacDonald, Phys. Rev. Lett. 106, 156801 (2011)

    Article  ADS  Google Scholar 

  23. Y. Lemonik, I. Aleiner, V.I. Fal’ko, Phys. Rev. B 85, 245451 (2012)

    Article  ADS  Google Scholar 

  24. F. Zhang, H. Min, A.H. MacDonald, Phys. Rev. B 86, 155128 (2012)

    Article  ADS  Google Scholar 

  25. J. Sinova, D. Culcer, Q. Niu, N.A. Sinitsyn, T. Jungwirth, A.H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  Google Scholar 

  26. S. Murakami, N. Nagaosa, S.C. Zhang, Science 301, 1348 (2003)

    Article  ADS  Google Scholar 

  27. J. Hirsch, Phys. Rev. Lett. 83, 1834 (1999)

    Article  ADS  Google Scholar 

  28. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  29. B.A. Bernevig, J. Orenstein, S.-C. Zhang, Phys. Rev. Lett. 97, 236601 (2006)

    Article  ADS  Google Scholar 

  30. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  31. J. Wang, C. Ortix, J. van den Brink, D.V. Efremov, Phys. Rev. B 96, 201104(R) (2017)

    Article  ADS  Google Scholar 

  32. I. Mandal, S. Gemsheim, Condens. Matter Phys. 22, 13701 (2019)

    Article  ADS  Google Scholar 

  33. J.M. Luttinger, Phys. Rev. 102, 1030 (1956)

    Article  ADS  Google Scholar 

  34. S. Murakami, N. Nagosa, S.-C. Zhang, Phys. Rev. B 69, 235206 (2004)

    Article  ADS  Google Scholar 

  35. I.M. Tsidilkovski, Electron Spectrum of Gapless Semiconductors (Springer-Verlag, Berlin, 1997)

  36. E.-G. Moon, C. Xu, Y.B. Kim, L. Balents, Phys. Rev. Lett. 111, 206401 (2013)

    Article  ADS  Google Scholar 

  37. W. Witczak-Krempa, G. Chen, Y.B. Kim, L. Balents, Annu. Rev. Condens. Matter Phys. 5, 57 (2014)

    Article  ADS  Google Scholar 

  38. T. Kondo, M. Nakayama, R. Chen, J.J. Ishikawa, E.-G. Moon, T. Yamamoto, Y. Ota, W. Malaeb, H. Kanai, Y. Nakashima, Y. Ishida, R. Yoshida, H. Yamamoto, M. Matsunami, S. Kimura, N. Inami, K. Ono, H. Kumigashira, S. Nakatsuji, L. Balents, S. Shin, Nat. Commun. 6, 10042 (2015)

    Article  ADS  Google Scholar 

  39. L. Savary, E.-G. Moon, L. Balents, Phys. Rev. X 4, 041027 (2014)

    Google Scholar 

  40. L. Savary, J. Ruhman, J.W.F. Venderbos, L. Fu, P.A. Lee, Phys. Rev. B 96, 214514 (2017)

    Article  ADS  Google Scholar 

  41. H. Oh, S. Lee, Y.-B. Kim, E.-G. Moon, https://doi.org/arXiv:1811.00021 [cond-mat.str-el] (2018)

  42. I.F. Herbut, Phys. Rev. Lett. 97, 146401 (2006)

    Article  ADS  Google Scholar 

  43. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  44. J. Polchinski, https://doi.org/arXiv:hep-th/9210046 (1992)

  45. R. Shankar, Rev. Mod. Phys. 66, 129 (1994)

    Article  ADS  Google Scholar 

  46. I. Herbut, A Modern Approach to Critical Phenomena (Cambridge University Press, Cambridge, England, 2007)

  47. Y. Huh, S. Sachdev, Phys. Rev. B 78, 064512 (2008)

    Article  ADS  Google Scholar 

  48. J.-H. She, J. Zaanen, A.R. Bishop, A.V. Balatsky, Phys. Rev. B 82, 165128 (2010)

    Article  ADS  Google Scholar 

  49. J.-H. She, M.J. Lawler, E.-A. Kim, Phys. Rev. B 92, 035112 (2015)

    Article  ADS  Google Scholar 

  50. J. Wang, G.-Z. Liu, New J. Phys. 13, 073039 (2013)

    Article  Google Scholar 

  51. J. Wang, G.-Z. Liu, Phys. Rev. D 90, 125015 (2014)

    Article  ADS  Google Scholar 

  52. J. Wang, G.-Z. Liu, Phys. Rev. B 92, 184510 (2015)

    Article  ADS  Google Scholar 

  53. J. Wang, G.-Z. Liu, D.V. Efremov, J. van den Brink, Phys. Rev. B 95, 024511 (2017)

    Article  ADS  Google Scholar 

  54. J. Wang, G.-Z. Liu, H. Kleinert, Phys. Rev. B 83, 214503 (2011)

    Article  ADS  Google Scholar 

  55. J. Wang, Phys. Rev. B 87, 054511 (2013)

    Article  ADS  Google Scholar 

  56. J. Wang, Phys. Lett. A 379, 1917 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  57. J. Wang, J. Phys.: Condens. Matter 30, 125401 (2018)

    ADS  Google Scholar 

  58. Y.-M. Dong, D.-X. Zheng, J. Wang, https://doi.org/arXiv:1806.03410 (2018)

  59. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, UK, 1999)

  60. R.M. Fernandes, A.V. Chubukov, J. Knolle, I. Eremin, J. Schmalian, Phys. Rev. B 85, 024534 (2012)

    Article  ADS  Google Scholar 

  61. R.M. Fernandes, S. Maiti, P. Wölfe, A.V. Chubukov, Phys. Rev. Lett. 111, 057001 (2013)

    Article  ADS  Google Scholar 

  62. I.F. Herbut, Z. Tešanović, Phys. Rev. Lett. 76, 4588 (1996)

    Article  ADS  Google Scholar 

  63. I.F. Herbut, Z. Tešanović, Phys. Rev. Lett. 78, 980 (1997)

    Article  ADS  Google Scholar 

  64. L. Fu, C.L. Kane, Phys. Rev. B 76, 045302 (2007)

    Article  ADS  Google Scholar 

  65. S. Maiti, A.V. Chubukov, Phys. Rev. B 82, 214515 (2010)

    Article  ADS  Google Scholar 

  66. A.V. Chubukov, M. Khodas, R.M. Fernandes, Phys. Rev. X 6, 041045 (2016)

    Google Scholar 

  67. M. Khodas, A.V. Chubukov, Phys. Rev. B 94, 115159 (2016)

    Article  ADS  Google Scholar 

  68. R. Ganesh, G. Baskaran, J. van den Brink, D.V. Efremov, Phys. Rev. Lett. 113, 177001 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J. Instability caused by the fermion–fermion interactions combined with rotational and particle-hole asymmetries in three-dimensional materials with quadratic band touching. Eur. Phys. J. B 92, 102 (2019). https://doi.org/10.1140/epjb/e2019-100014-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100014-5

Keywords

Navigation