Skip to main content

Advertisement

Log in

Two-fold effects of inhibitory neurons on the onset of synchronization in Izhikevich neuronal networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Synchronization is a widely studied phenomenon in neuroscience. The ever-increasing morbidity of brain diseases makes the investigation on this topic significant in both psychology and medicine. In this paper, we consider an Izhikevich neuronal network composed of both excitatory and inhibitory neurons, and introduce the Tsodyks-Uziel-Markram (TUM) model of neuronal transmission. To study the impact of inhibitory neurons in the synchronization, we make comparative studies by considering the inhibitory neurons could fire either spontaneously or not in the network. Simulation results exemplify that the synchronized system shows different periodic-like oscillatory patterns of multi-stripes. We find that the inhibitory neurons have two-fold impacts on the oscillatory patterns. On the one hand, they can delay the firing of the neurons, deleterious for synchronization. On the other hand, they are able to facilitate the transition of the oscillatory patterns, beneficial for synchronization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pikovsky, M. Rosenblum, K. Jürgen, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, UK, 2001)

  2. G. Buzsáki, A. Draguhn, Science 304, 1926 (2004)

    Article  ADS  Google Scholar 

  3. M. Bartos, I. Vida, P. Jonas, Nat. Rev. Neurosci. 8, 45 (2007)

    Article  Google Scholar 

  4. P. Fries, Annu. Rev. Neurosci. 32, 209 (2009)

    Article  Google Scholar 

  5. G. Buzsáki, Rhythms of the Brain (Oxford University Press, New York, 2006)

  6. X.-J. Wang, Physiol. Rev. 90, 1195 (2010)

    Article  Google Scholar 

  7. M. Steriade, Neuronal Substrates of Sleep and Epilepsy (Cambridge University Press, Cambridge, UK, 2003)

  8. J.P. Bolam, C.A. Ingham, P.J. Magill, The Basal Ganglia VIII (Springer Science & Business Media, New York, 2005)

  9. P.J. Uhlhaas, W. Singer, Nat. Rev. Neurosci. 11, 100 (2010)

    Article  Google Scholar 

  10. O. Yizhar, L.E. Fenno, M. Prigge, F. Schneider, T.J. Davidson, D.J. OShea, V.S. Sohal, I. Goshen, J. Finkelstein, J.T. Paz, Nature 477, 171 (2011)

    Article  ADS  Google Scholar 

  11. W. Gerstner, W.M. Kistler, R. Naud, L. Paninski, Neuronal Dynamics: From single neurons to networks and models of cognition (Cambridge University Press, Cambridge, UK, 2014)

  12. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  13. C. Koch, Biophysics of computation (Oxford University Press, Oxford, 1999)

  14. K. Miura, M. Okada, Phys. Rev. E 70, 021914 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. E.M. Izhikevich, IEEE Trans. Neural Networks 14, 1569 (2003)

    Article  Google Scholar 

  16. S.-J. Wang, G. Ouyang, J. Guang, M. Zhang, K.Y. Michael Wong, C. Zhou, Phys. Rev. Lett. 116, 018101 (2016)

    Article  ADS  Google Scholar 

  17. C.-Y. Wang, Z.-X. Wu, M.Z.Q. Chen, Phys. Rev. E 95, 012310 (2017)

    Article  ADS  Google Scholar 

  18. D. Purves, G.J. Augustine, D. Fitzpatrick, W.C. Hall, A.-S. LaMantia, J.O. McNamara, L.E. White, in Neuroscience, 4th edn. (Sinauer Associates, Sunderland, Massachusetts USA, 2008)

  19. R.S. Zucker, W.G. Regehr, Annu. Rev. Physiol. 64, 355 (2002)

    Article  Google Scholar 

  20. M. Tsodyks, A. Uziel, H. Markram, J. Neurosci. 20, RC50 (2000)

    Article  Google Scholar 

  21. H. Markram, M. Tsodyks, Nature 382, 807 (1996)

    Article  ADS  Google Scholar 

  22. M.V. Tsodyks, H. Markram, Proc. Natl. Acad. Sci. USA 94, 719 (1997)

    Article  ADS  Google Scholar 

  23. P. Scott, A.I. Cowan, C. Stricker, Phys. Rev. E 85, 041921 (2012)

    Article  ADS  Google Scholar 

  24. M. di Volo, R. Livi, S. Luccioli, A. Politi, A. Torcini, Phys. Rev. E 87, 032801 (2013)

    Article  ADS  Google Scholar 

  25. M. Uzuntarla, J.J. Torres, P. So, M. Ozer, E. Barreto, Phys. Rev. E 95, 012404 (2017)

    Article  ADS  Google Scholar 

  26. C. van Vreeswijk, H. Sompolinsky, Science 274, 1724 (1996)

    Article  ADS  Google Scholar 

  27. N. Brunel, Neurocomputing 32–33, 307 (2000)

    Article  Google Scholar 

  28. C. Van Vreeswijk, L.F. Abbott, G. Bard Ermentrout, J. Comput. Neurosci. 1, 313 (1994)

    Article  Google Scholar 

  29. T. Shimokawa, S. Shinomoto, Phys. Rev. E 73, 066221 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. di Volo, A. Torcini, Phys. Rev. Lett. 121, 128301 (2018)

    Article  ADS  Google Scholar 

  31. D. Guo, Q. Wang, M. Perc, Phys. Rev. E 85, 061905 (2012)

    Article  ADS  Google Scholar 

  32. H. Hu, J. Gan, P. Jonas, Science 345, 1255263 (2014)

    Article  Google Scholar 

  33. A.K. Vidybida, K.G. Kravchuk, Biosystems 112, 224 (2013)

    Article  Google Scholar 

  34. M. di Volo, R. Burioni, M. Casartelli, R. Livi, A. Vezzani, Phys. Rev. E 93, 012305 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. E. Bertolotti, R. Burioni, M. di Volo, A. Vezzani, Phys. Rev. E 95, 012308 (2017)

    Article  ADS  Google Scholar 

  36. F. Pittorino, M.I. Berganza, M. di Volo, A. Vezzani, R. Burioni, Phys. Rev. Lett. 118, 098102 (2017)

    Article  ADS  Google Scholar 

  37. E. Fuchs, A. Ayali, E. Ben-Jacob, S. Boccaletti, Phys. Biol. 6, 036018 (2009)

    Article  ADS  Google Scholar 

  38. A.L. Hodgkin, J. Physiol. 107, 165 (1948)

    Article  Google Scholar 

  39. L. Neltner, D. Hansel, G. Mato, C. Meunier, Neural Comput. 12, 1607 (2000)

    Article  Google Scholar 

  40. C. Li, Q. Zheng, Phys. Biol. 7, 036010 (2010)

    Article  ADS  Google Scholar 

  41. G. Buzski, E. Eidelberg, Brain Res. 230, 346 (1981)

    Article  Google Scholar 

  42. R. Miles, J. Physiol. 428, 61 (1990)

    Article  Google Scholar 

  43. S. Panzeri, E.T. Rolls, F. Battaglia, R. Lavis, Network 12, 423 (2001)

    Article  Google Scholar 

  44. M. Yi, L. Yang, Phys. Rev. E 81, 061924 (2010)

    Article  ADS  Google Scholar 

  45. A.A. Farokhniaee, E.W. Large, Phys. Rev. E 95, 062414 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Xi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, PX., Wang, CY. & Wu, ZX. Two-fold effects of inhibitory neurons on the onset of synchronization in Izhikevich neuronal networks. Eur. Phys. J. B 92, 113 (2019). https://doi.org/10.1140/epjb/e2019-100009-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100009-2

Keywords

Navigation