Skip to main content
Log in

Dimensionality, nematicity and superconductivity in Fe-based systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Study of Fe based compounds have drawn much attention due to the discovery of superconductivity as well as many other exotic electronic properties. Here, we review some of our works in these materials carried out employing density functional theory and angle resolved photoemission spectroscopy. The results presented here indicate that the dimensionality of the underlying electronic structure plays important role in deriving their interesting electronic properties. The nematicity found in most of these materials appears to be related to the magnetic long range order. We argue that the exoticity in the electronic properties are related to the subtlety in competing structural and magnetic instabilities present in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  2. Y. Kamihara, et al., J. Am. Chem. Soc. 128, 10012 (2006)

    Article  Google Scholar 

  3. O. Prakash, A. Kumar, A. Thamizhavel, S. Ramakrishnan, Science 355, 52 (2017)

    Article  ADS  Google Scholar 

  4. V.R.R. Medicherla, S. Patil, R.S. Singh, K. Maiti, Appl. Phys. Lett. 90, 062507 (2007)

    Article  ADS  Google Scholar 

  5. S. Thakur, K. Maiti, Solid State Commun. 193, 45 (2014)

    Article  ADS  Google Scholar 

  6. S. Thakur et al., Sci. Rep. 3, 3342 (2013)

    Article  Google Scholar 

  7. A. Chainani et al., Phys. Rev. B 64, 180509 (2001)

    Article  ADS  Google Scholar 

  8. B. Sacépé et al., Nat. Commun. 1, 140 (2010)

    Article  Google Scholar 

  9. S. Patil et al., J. Phys.: Condens. Matter 29, 465504 (2017)

    Google Scholar 

  10. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  11. J.J. Wu et al., Proc. Natl. Acad. Sci. USA 110, 17263 (2013)

    Article  ADS  Google Scholar 

  12. J.P. Sun et al., Nat. Commun. 7, 12146 (2016)

    Article  ADS  Google Scholar 

  13. M.S. Torikachvili, Phys. Rev. Lett. 101, 057006 (2008)

    Article  ADS  Google Scholar 

  14. K. Ishida, Y. Nakai, H. Hosono, J. Phys. Soc. Jpn 78, 062001 (2009)

    Article  ADS  Google Scholar 

  15. K. Maiti, Pramana, J. Phys. 84, 947 (2015)

    Google Scholar 

  16. T. Dahm et al., Nat. Phys. 5, 217 (2009)

    Article  Google Scholar 

  17. P. Monthoux, A.V. Balatsky, D. Pines, Phys. Rev. Lett. 67, 3448 (1991)

    Article  ADS  Google Scholar 

  18. D.J. Scalapino, E. Loh, J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

    Article  ADS  Google Scholar 

  19. P. Hirschfeld, M. Korshunov, I. Mazin, Rep. Prog. Phys. 74, 124508 (2011)

    Article  ADS  Google Scholar 

  20. F. Ning et al., Phys. Rev. Lett. 104, 037001 (2010)

    Article  ADS  Google Scholar 

  21. I.I. Mazin, Nature 464, 183 (2010)

    Article  ADS  Google Scholar 

  22. L. Boeri, M. Calandra, I.I. Mazin, O.V. Dolgov, F. Mauri, Phys. Rev. B 82, 020506 (2010)

    Article  ADS  Google Scholar 

  23. L. Boeri, O.V. Dolgov, A.A. Golubov, Phys. Rev. Lett. 101, 026403 (2008)

    Article  ADS  Google Scholar 

  24. P. Monthoux, D. Pines, G. Lonzarich, Nature 450, 1177 (2007)

    Article  ADS  Google Scholar 

  25. A. Lanzara et al., Nature 412, 510 (2001)

    Article  ADS  Google Scholar 

  26. X.J. Zhou et al., Phys. Rev. Lett. 95, 117001 (2005)

    Article  ADS  Google Scholar 

  27. B.P. Xie et al, Phys. Rev. Lett. 98, 147001 (2007)

    Article  ADS  Google Scholar 

  28. S.-I. Shamoto et al., Phys. Rev. B 82, 172508 (2010)

    Article  ADS  Google Scholar 

  29. A. Christianson et al., Nature 456, 930 (2008)

    Article  ADS  Google Scholar 

  30. Y. Qiu et al., Phys. Rev. Lett. 103, 067008 (2009)

    Article  ADS  Google Scholar 

  31. D.C. Johnston, Adv. Phys. 59, 803 (2010)

    Article  ADS  Google Scholar 

  32. Y.-M. Xu et al., https://doi.org/arXiv:1006.3958 (2010)

  33. J.E. Hoffman, Science 328, 441 (2010)

    Article  ADS  Google Scholar 

  34. C.W. Hicks et al., J. Phys. Soc. Jpn 78, 013708 (2008)

    Article  ADS  Google Scholar 

  35. T. Hanaguri, S. Niitaka, K. Kuroki, H. Takagi, Science 328, 474 (2010)

    Article  ADS  Google Scholar 

  36. B. Zeng et al., Nat. Commun. 1, 112 (2010)

    Article  Google Scholar 

  37. Y. Su, H. Liao, T. Li, J. Phys.: Condens. Matter 27, 105702 (2015)

    ADS  Google Scholar 

  38. T. Li, Y. Su, J. Phys.: Condens. Matter 29, 425603 (2017)

    Google Scholar 

  39. A. Martinelli et al., Phys. Rev. Lett. 118, 055701 (2017)

    Article  ADS  Google Scholar 

  40. C.-J. Kang, T. Birol, G. Kotliar, Phys. Rev. B 95, 014511 (2017)

    Article  ADS  Google Scholar 

  41. W. Li et al., Nat. Phys. 13, 957 (2017)

    Article  Google Scholar 

  42. Y.-T. Tam et al., Phys. Rev. Lett. 115, 117001 (2015)

    Article  ADS  Google Scholar 

  43. G. Adhikary et al., J. Phys.: Condens. Matter 25, 225701 (2013)

    ADS  Google Scholar 

  44. G. Adhikary et al., J. Appl. Phys, 114, 163906 (2013)

    Article  ADS  Google Scholar 

  45. G. Adhikary et al., J. Appl. Phys. 115, 123901 (2014)

    Article  ADS  Google Scholar 

  46. K. Maitiet al., AIP Conf. Proc. 1512, 15 (2013)

    Article  ADS  Google Scholar 

  47. G. Adhikary et al., AIP Conf. Proc. 1349, 837 (2011)

    Article  ADS  Google Scholar 

  48. G. Adhikary et al., AIP Conf. Proc. 1347, 169 (2011)

    Article  ADS  Google Scholar 

  49. K. Ali, K. Maiti, Sci. Rep. 7, 6298 (2017)

    Article  ADS  Google Scholar 

  50. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001)

  51. A. Kokalj, Comput. Mater. Sci. 28, 155 (2003)

    Article  Google Scholar 

  52. N. Kumar et al., Phys. Rev. B 79, 012504 (2009)

    Article  ADS  Google Scholar 

  53. R. Mittal et al., Phys. Rev. Lett. 102, 217001 (2009)

    Article  ADS  Google Scholar 

  54. K. Gofryk et al., Phys. Rev. Lett. 112, 186401 (2014)

    Article  ADS  Google Scholar 

  55. R. Dhaka et al., Phys. Rev. B 89, 020511 (2014)

    Article  ADS  Google Scholar 

  56. K. Ali, G. Adhikary, S. Thakur, S. Patil, S.K. Mahatha, A. Thamizhavel, G. De Ninno, P. Moras, P.M. Sheverdyaeva, C. Carbone, L. Petaccia, K. Maiti, Phys. Rev. B 97, 054505 (2018)

    Article  ADS  Google Scholar 

  57. X. Lu et al., Science 345, 657 (2014)

    Article  ADS  Google Scholar 

  58. S. Kasahara et al., Nature 486, 382 (2012)

    Article  ADS  Google Scholar 

  59. J.-H. Chu, H.-H. Kuo, J.G. Analytis, I.R. Fisher, Science 337, 710 (2012)

    Article  ADS  Google Scholar 

  60. S. Diallo et al., Phys. Rev. Lett. 102, 187206 (2009)

    Article  ADS  Google Scholar 

  61. J. Zhao et al., Nat. Phys. 5, 555 (2009)

    Article  Google Scholar 

  62. T.-M. Chuang et al., Science 327, 181 (2010)

    Article  ADS  Google Scholar 

  63. R. Daou et al., Nature 463, 519 (2010)

    Article  ADS  Google Scholar 

  64. J. Davis, P. Hirschfeld, Nat. Phys. 10, 184 (2014)

    Article  Google Scholar 

  65. E.P. Rosenthal et al., Nat. Phys. 10, 225 (2014)

    Article  Google Scholar 

  66. Q. Deng, J. Xing, J. Liu, H. Yang, H.-H. Wen, Phys. Rev. B 92, 014510 (2015)

    Article  ADS  Google Scholar 

  67. H.-H. Kuo, I.R. Fisher, Phys. Rev. Lett. 112, 227001 (2014)

    Article  ADS  Google Scholar 

  68. Y. Ming et al., Proc. Natl. Acad. Sci. USA 108, 6878 (2011)

    Article  Google Scholar 

  69. H.-H. Kuo, M.C. Shapiro, S.C. Riggs, I.R. Fisher, Phys. Rev. B 88, 085113 (2013)

    Article  ADS  Google Scholar 

  70. K. Maiti, R.S. Singh, V.R.R. Medicherla, S. Rayaprol, E.V. Sampathkumaran, Phys. Rev. Lett. 95, 016404 (2005)

    Article  ADS  Google Scholar 

  71. R. Bindu, K. Maiti, S. Khalid, E.V. Sampathkumaran, Phys. Rev. B 79, 094103 (2009)

    Article  ADS  Google Scholar 

  72. P.L. Paulose, N. Mohapatra, E.V. Sampathkumaran, Phys. Rev. B 77, 172403 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalobaran Maiti.

Additional information

Contribution to the Topical Issue “Coexistence of Long-Range Orders in Low-dimensional Systems”, edited by Sudhakar Yarlagadda and Peter B. Littlewood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, K., Maiti, K. Dimensionality, nematicity and superconductivity in Fe-based systems. Eur. Phys. J. B 91, 199 (2018). https://doi.org/10.1140/epjb/e2018-90359-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90359-2

Navigation