Skip to main content
Log in

Negative differential conductivity in liquid aluminum from real-time quantum simulations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The conduction of electricity in materials is usually described by Ohm’s law, which is a first order approximation to a more complex and non-linear behavior. It is well known that in some semiconductors, the conductivity, the constant that relates voltage and current, changes for high enough currents. In this work we predict for the first time that a metal, liquid aluminum, exhibits negative-differential conductivity, a non-linear effect where the current decreases as the applied voltage is increased. We observe this change in the conductivity for very high current densities of the order of 1012−1013 A∕cm2. Our predictions are based on a computational approach that can atomistically model, for the first time, non-linear effects in the conductivity from first principles by following in real-time the quantum dynamics of the electrons. From our simulations, we find that the change in the non-linear conductivity emerges from a competition between the current-induced accumulation of charge around the nuclei, which increases the scattering of the conduction electrons, and a decreasing ion-scattering cross-section at high currents. Our results illustrate how normal matter behaves under extreme fields that will become available from free electron lasers and other future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.K. Ridley, Proc. Phys. Soc. 82, 954 (1963)

    ADS  Google Scholar 

  2. A.F. Volkov, S.M. Kogan, Sov. Phys. Usp. 11, 881 (1969)

    ADS  Google Scholar 

  3. B.R. Pamplin, Contemp. Phys. 11, 1 (1970)

    ADS  Google Scholar 

  4. J. Gunn, Solid State Commun. 1, 88 (1963)

    ADS  Google Scholar 

  5. V. Gružinskis, J.H. Zhao, P. Shiktorov, E. Starikov, Mater. Sci. Forum 297, 341 (1999)

    Google Scholar 

  6. J. Chen, Science 286, 1550 (1999)

    Google Scholar 

  7. Y. Xue, S. Datta, S. Hong, R. Reifenberger, J. Henderson, C. Kubiak, Phys. Rev. B 59, R7852 (1999)

    ADS  Google Scholar 

  8. H. Dalgleish, G. Kirczenow, Nano Lett. 6, 1274 (2006)

    ADS  Google Scholar 

  9. M.L. Perrin, et al., Nat. Nanotechnol. 9, 830 (2014)

    ADS  Google Scholar 

  10. I.W. Lyo, P. Avouris, Science 245, 1369 (1989)

    ADS  Google Scholar 

  11. M. Rinkiö, A. Johansson, V. Kotimäki, P. Törmä, ACS Nano 4, 3356 (2010)

    Google Scholar 

  12. X. Zheng, W. Lu, T.A. Abtew, V. Meunier, J. Bernholc, ACS Nano 4, 7205 (2010)

    Google Scholar 

  13. Y. Wu, D.B. Farmer, W. Zhu, S.J. Han, C.D. Dimitrakopoulos, A.A. Bol, P. Avouris, Y.M. Lin, ACS Nano 6, 2610 (2012)

    Google Scholar 

  14. Y. Du, H. Pan, S. Wang, T. Wu, Y.P. Feng, J. Pan, A.T.S. Wee, ACS Nano 6, 2517 (2012)

    Google Scholar 

  15. Y.C. Lin, et al., Nat. Commun. 6, 7311 (2015)

    ADS  Google Scholar 

  16. P.B. Vyas, C. Naquin, H. Edwards, M. Lee, W.G. Vandenberghe, M.V. Fischetti, J. Appl. Phys. 121, 044501 (2017)

    ADS  Google Scholar 

  17. P. Ball, Nature 548, 507 (2017)

    ADS  Google Scholar 

  18. E. Cartlidge, Science 359, 968 (2018)

    ADS  Google Scholar 

  19. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957)

    ADS  MathSciNet  Google Scholar 

  20. D.A. Greenwood, Proc. Phys. Soc. 71, 585 (1958)

    ADS  MathSciNet  Google Scholar 

  21. D.J. Evans, G.P. Morriss,Statistical Mechanics of Nonequilibrium Liquids (ANU Press, 2013)

  22. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    ADS  Google Scholar 

  23. L. Landau, E. Lifshitz, inElectrodynamics of Continuous Media (Elsevier, 1984), pp. 86–104

  24. P. Allen, inConceptual Foundations of Materials - A Standard Model for Ground- and Excited-State Properties (Elsevier BV, UK, 2006), pp. 165–218

  25. K. Yabana, G.F. Bertsch, Phys. Rev. B 54, 4484 (1996)

    ADS  Google Scholar 

  26. G.F. Bertsch, J.I. Iwata, A. Rubio, K. Yabana, Phys. Rev. B 62, 7998 (2000)

    ADS  Google Scholar 

  27. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    ADS  Google Scholar 

  28. C. Kittel,Introduction to Solid State Physics (Wiley, 2004), available at https://doi.org/books.google.com/books?id=kym4QgAACAAJ

  29. A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Phys. Status Solidi B 243, 2465 (2006)

    ADS  Google Scholar 

  30. X. Andrade, et al., Phys. Chem. Chem. Phys. 17, 31371 (2015)

    Google Scholar 

  31. H. Childs et al., inHigh Performance Visualization - Enabling Extreme-Scale Scientific Insight (CRC, Hoboken, 2012), pp. 357–372

  32. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    ADS  Google Scholar 

  33. N. Ashcroft, L.J. Guild, Phys. Lett. 14, 23 (1965)

    ADS  Google Scholar 

  34. P.L. Silvestrelli, Phys. Rev. B 60, 16382 (1999)

    ADS  Google Scholar 

  35. M.P. Desjarlais, J.D. Kress, L.A. Collins, Phys. Rev. E 66, 025401R (2002)

    ADS  Google Scholar 

  36. V. Recoules, J.P. Crocombette, Phys. Rev. B 72, 104202 (2005)

    ADS  Google Scholar 

  37. V. Vlček, N. de Koker, G. Steinle-Neumann, Phys. Rev. B 85, 184201 (2012)

    ADS  Google Scholar 

  38. V.U. Nazarov, G. Vignale, Y.C. Chang, Phys. Rev. B 89, 241108 (2014)

    ADS  Google Scholar 

  39. M.P. Desjarlais, C.R. Scullard, L.X. Benedict, H.D. Whitley, R. Redmer, Phys. Rev. E 95, 033203 (2017)

    ADS  Google Scholar 

  40. J. Lindhard,On the properties of a gas of charged particles (I kommission hos Munksgaard, København, 1954)

  41. A. Schleife, Y. Kanai, A.A. Correa, Phys. Rev. B 91, 014306 (2015)

    ADS  Google Scholar 

  42. A.A. Correa, Comp. Mater. Sci. 150, 291 (2018)

  43. M. Born, Z. Phys. 38, 803 (1926)

    ADS  Google Scholar 

  44. D.V. Sivukhin, Rev. Plasma Phys. 4, 93 (1966)

    ADS  Google Scholar 

  45. P. Echenique, F.G. de Abajo, V. Ponce, M. Uranga, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interactions with Materials and Atoms 96, 583 (1995)

    ADS  Google Scholar 

  46. W. Barletta, et al., Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators Spectrometers, Detectors and Associated Equipment 618, 69 (2010)

    ADS  Google Scholar 

  47. R. Falcone, M. Dunne, H. Chapman, M. Yabashi, K. Ueda, J. Phys. B: At. Mol. Opt. Phys. 49, 180201 (2016)

    ADS  Google Scholar 

  48. F.F. Chen, in Introduction to Plasma Physics and Controlled Fusion (Springer Science & Business Media, Berlin, 1984), pp. 199–224

  49. J. Hu, Y. Wang, A. Vallabhaneni, X. Ruan, Y.P. Chen, Appl. Phys. Lett. 99, 113101 (2011)

    ADS  Google Scholar 

  50. L. Zhu, C.R. Otey, S. Fan, Appl. Phys. Lett. 100, 044104 (2012)

    ADS  Google Scholar 

  51. X. Zhou, Z. Zhang, J. Appl. Phys. 119, 175107 (2016)

    ADS  Google Scholar 

  52. F.G. Eich, M.D. Ventra, G. Vignale, Phys. Rev. Lett. 112, 196401 (2014)

    ADS  Google Scholar 

  53. G. Tatara, Phys. Rev. Lett. 114, 196601 (2015)

    ADS  Google Scholar 

  54. F.G. Eich, M. Di Ventra, G. Vignale, J. Phys.: Condens. Matter 29, 063001 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Andrade.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, X., Hamel, S. & Correa, A.A. Negative differential conductivity in liquid aluminum from real-time quantum simulations. Eur. Phys. J. B 91, 229 (2018). https://doi.org/10.1140/epjb/e2018-90291-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90291-5

Navigation