Skip to main content
Log in

Spectroscopy of the Hubbard dimer: the spectral potential

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The spectral potential is the dynamical generalization of the Kohn–Sham potential. It targets, in principle exactly, the spectral function in addition to the electronic density. Here we examine the spectral potential in one of the simplest solvable models exhibiting a non-trivial interplay between electron-electron interaction and inhomogeneity, namely the asymmetric Hubbard dimer. We discuss a general strategy to introduce approximations, which consists in calculating the spectral potential in the homogeneous limit (here represented by the symmetric Hubbard dimer) and importing it in the real inhomogeneous system through a suitable “connector”. The comparison of different levels of approximation to the spectral potential with the exact solution of the asymmetric Hubbard dimer gives insights about the advantages and the difficulties of this connector strategy for applications in real materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Dirac, Philos. Trans. R. Soc. Lond., Ser. A 123, 714 (1929)

    ADS  Google Scholar 

  2. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)

    Article  ADS  Google Scholar 

  3. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  4. R.M. Dreizler, E.K.U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer-Verlag, Berlin, Heidelberg, 1990)

  5. T.L. Gilbert, Phys. Rev. B 12, 2111 (1975)

    Article  ADS  Google Scholar 

  6. A. Fetter, J. Walecka, Quantum theory of many-particle systems, International series in pure and applied physics (McGraw-Hill, 1971)

  7. E.K.U. Gross, E. Runge, O. Heinonen, Many-Particle Theory, (Taylor & Francis, 1991)

  8. R.M. Martin, L. Reining, D.M. Ceperley, Interacting Electrons (Cambridge University Press, 2016)

  9. V.M. Galitskii, A.B. Migdal, Sov. Phys. JETP-USSR 7, 96 (1958)

    Google Scholar 

  10. R. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, 2004)

  11. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  12. A. Pribram-Jones, D.A. Gross, K. Burke, Ann. Rev. Phys. Chem. 66, 283 (2015)

    Article  ADS  Google Scholar 

  13. N.E. Dahlen, R. van Leeuwen, U. von Barth, Phys. Rev. A 73, 012511 (2006)

    Article  ADS  Google Scholar 

  14. M. Hellgren, U. von Barth, Phys. Rev. B 76, 075107 (2007)

    Article  ADS  Google Scholar 

  15. F. Caruso, D.R. Rohr, M. Hellgren, X. Ren, P. Rinke, A. Rubio, M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013)

    Article  ADS  Google Scholar 

  16. M. Hellgren, F. Caruso, D.R. Rohr, X. Ren, A. Rubio, M. Scheffler, P. Rinke, Phys. Rev. B 91, 165110 (2015)

    Article  ADS  Google Scholar 

  17. See e.g. Hardy Gross at “Teaching the Theory in Density Functional Theory”, https://doi.org/www.cecam.org/workshop-1326.html, CECAM Lausanne (2017), https://doi.org/youtu.be/q_uT0OhmqFA

  18. A.J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 112, 289 (2012)

    Article  Google Scholar 

  19. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

    Article  ADS  Google Scholar 

  20. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  21. M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio, eds., Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2012)

  22. K. Pernal, O. Gritsenko, E.J. Baerends, Phys. Rev. A 75, 012506 (2007)

    Article  ADS  Google Scholar 

  23. K. Pernal, K. Giesbertz, Topics in Current Chemistry, in Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT) (Springer, Berlin, 2015), Vol. 368, pp. 125–183

  24. G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, 2013)

  25. S. Hüfner, Advanced Texts in Physics, in Photoelectron Spectroscopy: Principles and Applications (Springer, Berlin, Heidelberg, 2013)

  26. L.J. Sham, W. Kohn, Phys. Rev. 145, 561 (1966)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  28. L.J. Sham, M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983)

    Article  ADS  Google Scholar 

  29. U. von Barth Nato ASI Series B (Plenum Press, New York, 1984), p. 67

  30. M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30, 2745 (1984)

    Article  ADS  Google Scholar 

  31. M. vanSchilfgaarde, T. Kotani, S. Faleev, Phys. Rev. Lett. 96, 226402 (2006)

    Article  ADS  Google Scholar 

  32. K. Pernal, J. Cioslowski, Chem. Phys. Lett. 412, 71 (2005)

    Article  ADS  Google Scholar 

  33. S. Sharma, J.K. Dewhurst, S. Shallcross, E.K.U. Gross, Phys. Rev. Lett. 110, 116403 (2013)

    Article  ADS  Google Scholar 

  34. N.N. Lathiotakis, N. Helbig, A. Rubio, N.I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)

    Article  ADS  Google Scholar 

  35. S.D. Sabatino, J.A. Berger, L. Reining, P. Romaniello, J. Chem. Phys. 143, 024108 (2015)

    Article  ADS  Google Scholar 

  36. E. Kamil, R. Schade, T. Pruschke, P.E. Blöchl, Phys. Rev. B 93, 085141 (2016)

    Article  ADS  Google Scholar 

  37. B. Farid, Ground and low-lying excited states of interacting electron systems: a survey and some critical analyses, in Electron Correlation in the Solid State, edited by N. March (Imperial College Press, 1999)

  38. L. Hedin, Phys. Rev. 139, A796 (1965)

    Article  ADS  Google Scholar 

  39. M. Gatti, V. Olevano, L. Reining, I.V. Tokatly, Phys. Rev. Lett. 99, 057401 (2007)

    Article  ADS  Google Scholar 

  40. A. Ferretti, I. Dabo, M. Cococcioni, N. Marzari, Phys. Rev. B 89, 195134 (2014)

    Article  ADS  Google Scholar 

  41. L.J. Sham, Phys. Rev. B 32, 3876 (1985)

    Article  ADS  Google Scholar 

  42. R.T. Sharp, G.K. Horton, Phys. Rev. 90, 317 (1953)

    Article  ADS  Google Scholar 

  43. R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. Lett. 56, 2415 (1986)

    Article  ADS  Google Scholar 

  44. R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 36, 6497 (1987)

    Article  ADS  Google Scholar 

  45. A.G. Eguiluz, M. Heinrichsmeier, A. Fleszar, W. Hanke, Phys. Rev. Lett. 68, 1359 (1992)

    Article  ADS  Google Scholar 

  46. Y.M. Niquet, M. Fuchs, X. Gonze, J. Chem. Phys. 118, 9504 (2003)

    Article  ADS  Google Scholar 

  47. M. Lüders, M.A.L. Marques, N.N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. B 72, 024545 (2005)

    Article  ADS  Google Scholar 

  48. M.A.L. Marques, M. Lüders, N.N. Lathiotakis, G. Profeta, A. Floris, L. Fast, A. Continenza, E.K.U. Gross, S. Massidda, Phys. Rev. B 72, 024546 (2005)

    Article  ADS  Google Scholar 

  49. R. van Leeuwen, Phys. Rev. Lett. 76, 3610 (1996)

    Article  ADS  Google Scholar 

  50. R. Requist, O. Pankratov, Phys. Rev. B 77, 235121 (2008)

    Article  ADS  Google Scholar 

  51. T. Baldsiefen, A. Cangi, E.K.U. Gross, Phys. Rev. A 92, 052514 (2015)

    Article  ADS  Google Scholar 

  52. M. Gatti, Ph.D. thesis, Ecole Polytechnique, Palaiseau (France), 2007, https://doi.org/etsf.polytechnique.fr/system/files/Thesis_Gatti.pdf

  53. A. Georges, AIP Conference Proceedings 715, 3 (2004)

    Article  ADS  Google Scholar 

  54. E.J. Baerends, Phys. Rev. Lett. 87, 133004 (2001)

    Article  ADS  Google Scholar 

  55. D.J. Carrascal, J. Ferrer, J.C. Smith, K. Burke, J. Phys.: Condens. Matter 27, 393001 (2015)

    Google Scholar 

  56. D.J. Carrascal, J. Ferrer, Phys. Rev. B 85, 045110 (2012)

    Article  ADS  Google Scholar 

  57. J.C. Smith, A. Pribram-Jones, K. Burke, Phys. Rev. B 93, 245131 (2016)

    Article  ADS  Google Scholar 

  58. K. Deur, L. Mazouin, E. Fromager, Phys. Rev. B 95, 035120 (2017)

    Article  ADS  Google Scholar 

  59. K. Deur, L. Mazouin, B. Senjean, E. Fromager, https://doi.org/arXiv:1803.00291 (2018)

  60. B. Senjean, M. Tsuchiizu, V. Robert, E. Fromager, Mol. Phys. 115, 48 (2017)

    Article  ADS  Google Scholar 

  61. F. Aryasetiawan, O. Gunnarsson, Phys. Rev. B 66, 165119 (2002)

    Article  ADS  Google Scholar 

  62. R. Baer, J. Chem. Phys. 128, 044103 (2008)

    Article  ADS  Google Scholar 

  63. Y. Li, C.A. Ullrich, J. Chem. Phys. 129, 044105 (2008)

    Article  ADS  Google Scholar 

  64. M. Farzanehpour, I.V. Tokatly, Phys. Rev. B 86, 125130 (2012)

    Article  ADS  Google Scholar 

  65. J.I. Fuks, M. Farzanehpour, I.V. Tokatly, H. Appel, S. Kurth, A. Rubio, Phys. Rev. A 88, 062512 (2013)

    Article  ADS  Google Scholar 

  66. J.I. Fuks, N.T. Maitra, Phys. Rev. A 89, 062502 (2014)

    Article  ADS  Google Scholar 

  67. D.J. Carrascal, J. Ferrer, N. Maitra, K. Burke, https://doi.org/arXiv:1802.09988 (2018)

  68. R. López-Sandoval, G.M. Pastor, Phys. Rev. B 66, 155118 (2002)

    Article  ADS  Google Scholar 

  69. R. López-Sandoval, G.M. Pastor, Phys. Rev. B 67, 035115 (2003)

    Article  ADS  Google Scholar 

  70. I. Mitxelena, M. Piris, M. Rodríguez-Mayorga, J. Phys.: Condens. Matter 29, 425602 (2017)

    Google Scholar 

  71. R. Requist, O. Pankratov, Phys. Rev. A 81, 042519 (2010)

    Article  ADS  Google Scholar 

  72. P. Romaniello, S. Guyot, L. Reining, J. Chem. Phys. 131, 154111 (2009)

    Article  ADS  Google Scholar 

  73. P. Romaniello, F. Bechstedt, L. Reining, Phys. Rev. B 85, 155131 (2012)

    Article  ADS  Google Scholar 

  74. T. Olsen, K.S. Thygesen, J. Chem. Phys. 140, 164116 (2014)

    Article  ADS  Google Scholar 

  75. X. Wang, C.D. Spataru, M.S. Hybertsen, A.J. Millis, Phys. Rev. B 77, 045119 (2008)

    Article  ADS  Google Scholar 

  76. M.P. von Friesen, C. Verdozzi, C.O. Almbladh, Phys. Rev. Lett. 103, 176404 (2009)

    Article  ADS  Google Scholar 

  77. M. Puig von Friesen, C. Verdozzi, C.O. Almbladh, Phys. Rev. B 82, 155108 (2010)

    Article  ADS  Google Scholar 

  78. M. Vanzini, Ph.D. thesis, Université Paris-Saclay, Ecole Polytechnique, Palaiseau (France), 2018, https://doi.org/etsf.polytechnique.fr/system/files/these_0.pdf

  79. A. Schindlmayr, R.W. Godby, Phys. Rev. B 51, 10427 (1995)

    Article  ADS  Google Scholar 

  80. M. Vanzini, L. Reining, M. Gatti, https://doi.org/arXiv:1708.02450 (2017)

  81. S. Di Sabatino Ph.D. thesis, Université Paul Sabatier, Toulouse, France, 2015, https://doi.org/tel.archives-ouvertes.fr/tel-01230626v2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Gatti.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanzini, M., Reining, L. & Gatti, M. Spectroscopy of the Hubbard dimer: the spectral potential. Eur. Phys. J. B 91, 192 (2018). https://doi.org/10.1140/epjb/e2018-90277-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90277-3

Navigation