Skip to main content
Log in

From quantum optimal control theory to coherent destruction of tunneling

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we study coherent destruction of tunneling in driven spin-boson model. We formulate this physical process as a quantum optimal control problem. A running cost functional has been used to address the optimal control problem at hand. The dynamic is described by a Born–Markov master equation derived using the Bloch–Redfield formalism. We use the techniques of automatic differentiation to compute the gradient for the cost functional. We write the optimal control field as monochromatic plane wave. The robustness of the control profile against temperature and the system–bath coupling variations are also analyzed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Nielson, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  2. W.G. Unruh, Phys. Rev. A 51, 992 (1995)

    Article  ADS  Google Scholar 

  3. P. Zanardi, M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  4. D.A. Lidar, I.L. Chuang, K.B. Whaley, Phys. Rev. Lett. 81, 2594 (1999)

    Article  ADS  Google Scholar 

  5. J. Preskill, Proc. R. Soc. Lond. A 454, 385 (1998)

    Article  ADS  Google Scholar 

  6. E. Knill, R. Laflamme, L. Viola, Phys. Rev. Lett. 84, 2525 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Facchi, Pascazio, Phys. Rev. A 89, 080401 (2002)

    Google Scholar 

  8. L. Viola, S. Lloyd, Phys. Rev. A 58, 2733 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  9. L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 83, 4888 (1999)

    Article  ADS  Google Scholar 

  11. L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 85, 3520 (2000)

    Article  ADS  Google Scholar 

  12. P. Zanardi, Phys. Lett. A 258, 77 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Vitali, P. Tombesi, Phys. Rev. A 59, 4178 (1999)

    Article  ADS  Google Scholar 

  14. D. Vitali, P. Tombesi, Phys. Rev. A 65, 012305 (2001)

    Article  ADS  Google Scholar 

  15. I. Walmsley, H. Rabitz, Phys. Today 56, 43 (2003)

    Article  Google Scholar 

  16. H. Jirari, W. Pötz, Phys. Rev. A 72, 013409 (2005)

    Article  ADS  Google Scholar 

  17. H. Jirari, Europhys. Lett. 87, 40003 (2009)

    Article  ADS  Google Scholar 

  18. H. Jirari, W. Pötz, Phys. Rev. A 74, 022306 (2006)

    Article  ADS  Google Scholar 

  19. R. Xu, Y. Yan, Y Ohtsuki, Y. Fujimira, H. Rabitz, J. Chem. Phys. Lett. 120, 6600 (2004)

    ADS  Google Scholar 

  20. O. Kocharovskaya et al., Phys. Rev. A 49, 4928 (1994)

    Article  ADS  Google Scholar 

  21. D.H. Schirrmeister, V. May, Chem. Phys. Lett. 297, 383 (1998)

    Article  ADS  Google Scholar 

  22. L. Hartmann, I. Goychuk, M. Grifoni, P. Hänggi, Phys. Rev. E 61, R4687 (2000)

    Article  ADS  Google Scholar 

  23. J. Cai, S. Popescu, H.J. Briegel, Phys. Rev. E 82, 021921 (2010)

    Article  ADS  Google Scholar 

  24. D. Zueco, P. Hänggi, S. Kohler, New J. Phys. 10, 115012 (2008)

    Article  ADS  Google Scholar 

  25. J. Werschnik, E.K.U. Gross, J. Phys. B 40, R175 (2007)

    Article  ADS  Google Scholar 

  26. L.S. Pontryagin, The Mathematical Theory of the Optimal Process (Wiley-, New York, 1962)

  27. L. Hascoet, V. Pascual, TAPENADE 2.1 user’s guide, Rapport Technique 0300, INRIA, September 2004

  28. H. Jirari, F.W.J. Hekking, O. Buisson, Europhys. Lett. 87, 28004 (2009)

    Article  ADS  Google Scholar 

  29. H. Jirari, W. Pötz, Europhys. Lett. 77, 50005 (2007)

    Article  ADS  Google Scholar 

  30. N. Barros, M. Rassam, H. Jirari, H. Kachkachi, Phys. Rev. B 83, 144418 (2011)

    Article  ADS  Google Scholar 

  31. H. Jirari, N. Wu, Eur. Phys. J. B 89, 100 (2016)

    Article  ADS  Google Scholar 

  32. M. Grifoni, P. Hänggi, Phys. Rep. 304, 1 (1998)

    Article  Google Scholar 

  33. F. Grossman, T. Dittrich, P. Jung, P. Hänggi, Phys. Rev. Lett. 67, 516 (1991)

    Article  ADS  Google Scholar 

  34. F. Grossman, P. Hänggi, Europhys. Lett. 61, 571 (1992)

    Article  ADS  Google Scholar 

  35. I. Goychuck, P. Hänggi, Adv. Phys. 54, 525 (2005)

    Article  ADS  Google Scholar 

  36. S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005)

    Article  ADS  Google Scholar 

  37. R.W. Munn, R. Silbey, J. Chem. Phys. 83, 1843 (1985)

    Article  ADS  Google Scholar 

  38. N. Wu, K.-W. Sun, Z. Chang, Y. Zhao, J. Chem. Phys. 36, 124513 (2012)

    Article  ADS  Google Scholar 

  39. K.M. Fonseca-Romero, S. Kohler, P. Hänggi, Phys. Rev. Lett. 95, 140502 (2005)

    Article  ADS  Google Scholar 

  40. J. Stockburger, Phys. Rev. E 59, R4709 (1999)

    Article  ADS  Google Scholar 

  41. E. Kierige et al., Phys. Rev. Lett. 100, 190405 (2008)

    Article  ADS  Google Scholar 

  42. T. Tamayo-Mendoza, C. Kreisbeck, R. Lindh, A. Aspuru-Guzi, ACS Cent. Sci. 4, 559 (2018)

    Article  Google Scholar 

  43. Yu. Maklin, G. Schön, S. Shnirman, Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  44. G. Wendin, V.S. Shumeiko, in Handbook of Theoritcal and Computational Nanotechnology, edited by M. Rieth, W. Schommers (ASP, Los Angeles, 2006), Vol. 3, pp. 223–309

  45. T.P. Orlando et al., Phys. Rev. B 60, 15398 (1999)

    Article  ADS  Google Scholar 

  46. J.E. Mooij et al., Science 285, 1036 (1999)

    Article  Google Scholar 

  47. A.E. Bryson, Y.C. Ho, Applied Optimal Control (Hemisphere, New York, 1975)

  48. J.T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming (SIAM, Philadelphia, 2001)

  49. C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)

    Article  ADS  Google Scholar 

  50. D.M. Gay, Usage Summary for Selected Optimization Routines, Computing Science Technical Report No 153, AT&T Bell Laboratories, 1990. https://doi.org/www.netlib.org/port

  51. M. Grifoni, M. Winterstetter, U. Weiss, Phys. Rev. E 56, 334 (1997)

    Article  ADS  Google Scholar 

  52. M. Grace et al., J. Phys. B 40, S103, (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Jirari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jirari, H. From quantum optimal control theory to coherent destruction of tunneling. Eur. Phys. J. B 92, 21 (2019). https://doi.org/10.1140/epjb/e2018-90231-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90231-5

Keywords

Navigation