Skip to main content
Log in

How sharply does the Anderson model depict a single-electron transistor?

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The single-impurity Anderson model has been the focus of theoretical studies of molecular junctions and the single-electron transistor, a nanostructured device comprising a quantum dot that bridges two otherwise decoupled metallic leads. The low-temperature transport properties of the model are controlled by the ground-state occupation of the quantum dot, a circumstance that recent density-functional approaches have explored. Here we show that the ground-state dot occupation also parametrizes a linear mapping between the thermal dependence of the zero-bias conductance and a universal function of the temperature scaled by the Kondo temperature. Careful measurements by Grobis and co-workers are very accurately fitted by the universal mapping. Nonetheless, the dot occupation and an asymmetry parameter extracted from the same mapping are relatively distant from the expected values. We conclude that mathematical results derived from the model Hamiltonian reproduce accurately the universal physical properties of the device. In contrast, non-universal features cannot be reproduced quantitatively. To circumvent this limitation, ab initio studies of the device at high energies seem necessary, to accurately define the model Hamiltonian. Our conclusion reinforces findings by Gross and coworkers, who applied time-dependent density-functional theory to show that, to describe the low-energy properties of molecular junctions, one must be able to describe the high-energy regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bouchiat, Y. Gefen, S. Guéron, G. Montambaux, J. Dalibard (Eds.), Nanophysics: coherence and transport (Elsevier, Amsterdam, 2005)

  2. Y.V. Nazarov, Y.M. Blanter, Quantum transport: introduction to nanoscience (Cambridge University Press, Cambridge, 2009)

  3. G. Stefanucci, R. van Leeuwen, Nonequilibrium many-body theory of quantum systems: a modern introduction (Cambridge University Press, Cambridge, 2013)

  4. M. Thoss, F. Evers, J. Chem. Phys. 148, 030901 (2018)

    Article  ADS  Google Scholar 

  5. L.I. Glazman, M.E. Raikh, JETP Lett. 47, 452 (1987)

    ADS  Google Scholar 

  6. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Nature 391, 156 (1998)

    Article  ADS  Google Scholar 

  7. D. Goldhaber-Gordon, J. Gores, M.A. Kastner, H. Shtrikman, D. Mahalu, U. Meirav, Phys. Rev. Lett. 81, 5225 (1998)

    Article  ADS  Google Scholar 

  8. T.K. Ng, P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988)

    Article  ADS  Google Scholar 

  9. H. Mera, Y.M. Niquet, Phys. Rev. Lett. 105, 216408 (2010)

    Article  ADS  Google Scholar 

  10. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  11. P. Schmitteckert, F. Evers, Phys. Rev. Lett. 100, 086401 (2008)

    Article  ADS  Google Scholar 

  12. P. Tröster, P. Schmitteckert, F. Evers, Phys. Rev. B 85, 115409 (2012)

    Article  ADS  Google Scholar 

  13. G. Stefanucci, S. Kurth, Phys. Rev. Lett. 107, 216401 (2011)

    Article  ADS  Google Scholar 

  14. J.P. Bergfield, Z.-F. Liu, K. Burke, C.A. Stafford, Phys. Rev. Lett. 108, 066801 (2012)

    Article  ADS  Google Scholar 

  15. Z.-F. Liu, J.P. Bergfield, K. Burke, C.A. Stafford, Phys. Rev. B 85, 155117 (2012)

    Article  ADS  Google Scholar 

  16. S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, E.K.U. Gross, Phys. Rev. Lett. 104, 236801 (2010)

    Article  ADS  Google Scholar 

  17. S. Kurth, G. Stefanucci, Phys. Rev. B 94, 241103 (2016)

    Article  ADS  Google Scholar 

  18. S. Kurth, G. Stefanucci, J. Phys.: Condens. Matter 29, 413002 (2017)

    Google Scholar 

  19. D. Jacob, S. Kurth, Nano Lett. 18, 2086 (2018)

    Article  ADS  Google Scholar 

  20. S. Kurth, D. Jacobs, arXiv:1803.06307[cond-mat.mes-hall] (2018)

  21. M. Yoshida, A.C. Seridonio, L.N. Oliveira, Phys. Rev. B 80, 235317 (2009)

    Article  ADS  Google Scholar 

  22. M. Grobis, I.G. Rau, R.M. Potok, H. Shtrikman, D. Goldhaber-Gordon, Phys. Rev. Lett. 100, 246601 (2008)

    Article  ADS  Google Scholar 

  23. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  24. H.R. Krishna-murthy, J.W. Wilkins, K.G. Wilson, Phys. Rev. B 21, 1003 (1980)

    Article  ADS  Google Scholar 

  25. M. Pustilnik, L. Glazman, J. Phys.: Condens. Matter 16, R513 (2004)

    ADS  Google Scholar 

  26. P.W. Anderson, Phys. Rev. 124, 41 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  27. J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966)

    Article  ADS  Google Scholar 

  28. J.W.M. Pinto, L.N. Oliveira, Comput. Phys. Commun. 185, 1299 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  29. D.C. Langreth, Phys. Rev. 150, 516 (1966)

    Article  ADS  Google Scholar 

  30. T. Costi, A. Hewson, V. Zlatic, J. Phys.: Condens. Matter 6, 2519 (1994)

    ADS  Google Scholar 

  31. R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  32. A.C. Seridonio, M. Yoshida, L.N. Oliveira, Europhys. Lett. 86, 67006 (2009)

    Article  ADS  Google Scholar 

  33. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  34. S. Kurth, G. Stefanucci, Phys. Rev. Lett. 111, 030601 (2013)

    Article  ADS  Google Scholar 

  35. A.M. Tsvelick, P.B. Wiegmann, Adv. Phys. 32, 453 (1983)

    Article  ADS  Google Scholar 

  36. K. Zawadzki, L.N. Oliveira, Combined density-functional theory/numerical renormalization group approach to the computation of transport properties. Unpublished

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz N. Oliveira.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zawadzki, K., Oliveira, L.N. How sharply does the Anderson model depict a single-electron transistor?. Eur. Phys. J. B 91, 136 (2018). https://doi.org/10.1140/epjb/e2018-90164-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90164-y

Navigation