Skip to main content
Log in

Performance of the constrained minimization of the total energy in density functional approximations: the electron repulsion density and potential

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the constrained minimization method of Gidopoulos and Lathiotakis [N.I. Gidopoulos, N.N. Lathiotakis, J. Chem. Phys. 136, 224109 (2012)], the Hartree exchange and correlation Kohn-Sham potential of a finite N-electron system is replaced by the electrostatic potential of an effective charge density that is everywhere positive and integrates to a charge of N − 1 electrons. The optimal effective charge density (electron repulsion density, ρrep) and the corresponding optimal effective potential (electron repulsion potential vrep) are obtained by minimizing the electronic total energy in any density functional approximation. The two constraints are sufficient to remove the self-interaction errors from vrep, correcting its asymptotic behavior at large distances from the system. In the present work, we describe, in complete detail, the constrained minimization method, including recent refinements. We also assess its performance in removing the self-interaction errors for three popular density functional approximations, namely LDA, PBE and B3LYP, by comparing the obtained ionization energies to their experimental values for an extended set of molecules. We show that the results of the constrained minimizations are almost independent of the specific approximation with average percentage errors 15%, 14%, 13% for the above DFAs respectively. These errors are substantially smaller than the corresponding errors of the plain (unconstrained) Kohn-Sham calculations at 38%, 39% and 27% respectively. Finally, we showed that this method correctly predicts negative values for the HOMO energies of several anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  2. A.I. Blair, A. Kroukis, I.N. Gidopoulos, J. Chem. Phys. 142, 084116 (2015)

    Article  ADS  Google Scholar 

  3. M. Lundberg, P.E. Siegbahn, J. Chem. Phys. 122, 224103 (2005)

    Article  ADS  Google Scholar 

  4. N. Rösch, S. Trickey, J. Chem. Phys. 106, 8940 (1997)

    Article  ADS  Google Scholar 

  5. C. Toher, A. Filippetti, S. Sanvito, K. Burke, Phys. Rev. Lett. 95, 146402 (2005)

    Article  ADS  Google Scholar 

  6. S. Goedecker, C. Umrigar, Phys. Rev. A 55, 1765 (1997)

    Article  ADS  Google Scholar 

  7. J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983)

    Article  ADS  Google Scholar 

  8. C.O. Almbladh, U. von Barth, Phys. Rev. B 31, 3231 (1985)

    Article  ADS  Google Scholar 

  9. A. Görling, Phys. Rev. Lett. 83, 5459 (1999)

    Article  ADS  Google Scholar 

  10. N.I. Gidopoulos, N.N. Lathiotakis, J. Chem. Phys. 136, 224109 (2012)

    Article  ADS  Google Scholar 

  11. N. Gidopoulos, N.N. Lathiotakis, Adv. Atom. Mol. Opt. Phys. 64, 129 (2015)

    Article  ADS  Google Scholar 

  12. R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49, 2421 (1994)

    Article  ADS  Google Scholar 

  13. C. Legrand, E. Suraud, P.G. Reinhard, J. Phys. B: Atom. Mol. Opt. Phys. 35, 1115 (2002)

    Article  ADS  Google Scholar 

  14. T. Tsuneda, K. Hirao, J. Chem. Phys. 140, 18A513 (2014)

    Article  Google Scholar 

  15. M.R. Pederson, A. Ruzsinszky, J.P. Perdew, J. Chem. Phys. 140, 121103 (2014)

    Article  ADS  Google Scholar 

  16. N. Gidopoulos, N.N. Lathiotakis, Adv. Atom. Mol. Opt. Phys. 64, 129 (2015)

    Article  ADS  Google Scholar 

  17. S.J. Clark, T.W. Hollins, K. Refson, N.I. Gidopoulos, J. Phys.: Condens. Matter 29, 374002 (2017)

    Google Scholar 

  18. S. Kümmel, J.P. Perdew, Mol. Phys. 101, 1363 (2003)

    Article  ADS  Google Scholar 

  19. N.N. Lathiotakis, N. Helbig, A. Rubio, N.I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)

    Article  ADS  Google Scholar 

  20. N.N. Lathiotakis, N. Helbig, A. Rubio, N.I. Gidopoulos, J. Chem. Phys. 141, 164120 (2014)

    Article  ADS  Google Scholar 

  21. I. Theophilou, N.N. Lathiotakis, N.I. Gidopoulos, A. Rubio, N. Helbig, J. Chem. Phys. 143, 054106 (2015)

    Article  ADS  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  24. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  25. C.G. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A 107, 4184 (2003)

    Article  Google Scholar 

  26. S. Hirata, S. Ivanov, I. Grabowski, R.J. Bartlett, K. Burke, J.D. Talman, J. Chem. Phys. 115, 1635 (2001)

    Article  ADS  Google Scholar 

  27. N.I. Gidopoulos, N.N. Lathiotakis, Phys. Rev. A 85, 052508 (2012)

    Article  ADS  Google Scholar 

  28. N. Lathiotakis, M.A. Marques, J. Chem. Phys. 128, 184103 (2008)

    Article  ADS  Google Scholar 

  29. R.D. Johnson III, NIST computational chemistry comparison and benchmark database (2011), Available at https://doi.org/cccbdb.nist.gov

  30. G. Zhang, C.B. Musgrave, J. Phys. Chem. A 111, 1554 (2007)

    Article  Google Scholar 

  31. O.V. Gritsenko, L.M. Mentel, E.J. Baerends, J. Chem. Phys. 144, 204114 (2016)

    Article  ADS  Google Scholar 

  32. O. Gritsenko, R. van Leeuwen, E. van Lenthe, E.J. Baerends, Phys. Rev. A 51, 1944 (1995)

    Article  ADS  Google Scholar 

  33. P. Schipper, O. Gritsenko, S. Van Gisbergen, E. Baerends, J. Chem. Phys. 112, 1344 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektarios N. Lathiotakis.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitts, T., Gidopoulos, N.I. & Lathiotakis, N.N. Performance of the constrained minimization of the total energy in density functional approximations: the electron repulsion density and potential. Eur. Phys. J. B 91, 130 (2018). https://doi.org/10.1140/epjb/e2018-90123-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90123-8

Navigation