Skip to main content
Log in

Effect of magnetic impurities in chiral p-wave superconducting nanoloops

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effect of many magnetic impurities in symmetric chiral p-wave superconducting nanoloops is investigated by numerically solving the BdG equations self-consistently. Two magnetic impurities can lead to the appearance of two impurity bound levels close to the Fermi level. The arising bound states can cross the Fermi level at the same impurity strength for the case of two independent midway impurities, while multiple zero-energy states can be obtained at two separated values of impurity strength when two independent edge impurities are present. Moreover, the multiple zero modes can only show up for appropriate relative positions between two edge impurities due to the quantum interference effect. Particularly, for some appropriate strength of two independent midway impurities, the impurity bound levels cross the Fermi level twice with increasing threaded flux, while the multiple zero modes can not emerge in the flux evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Balatsky, I. Vekhter, J.-X. Zhu, Rev. Mod. Phys. 78, 373 (2006)

    Article  ADS  Google Scholar 

  2. H. Alloul, J. Bobroff, M. Gabay, P.J. Hirschfeld, Rev. Mod. Phys. 81, 45 (2009)

    Article  ADS  Google Scholar 

  3. P.W. Anderson, J. Phys. Chem. Solids 11, 26 (1959)

    Article  ADS  Google Scholar 

  4. G.-Q. Zha, M.V. Milosevic, S.-P. Zhou, F.M. Peeters, Phys. Rev. B 84, 132501 (2011)

    Article  ADS  Google Scholar 

  5. L.-F. Zhang, L. Covaci, F.M. Peeters, Europhys. Lett. 109, 17010 (2015)

    Article  ADS  Google Scholar 

  6. L. Yu, Acta Phys. Sin. 21, 75 (1965)

    Google Scholar 

  7. H. Shiba, Prog. Theor. Phys. 40, 435 (1968)

    Article  ADS  Google Scholar 

  8. A.I. Rusinov, JETP Lett. 9, 85 (1969)

    ADS  Google Scholar 

  9. L.N. Bulaevskii, V.V. Kuzii, A.A. Sobyanin, JETP Lett. 25, 290 (1977)

    ADS  Google Scholar 

  10. A.V. Rozhkov, D.P. Arovas, Phys. Rev. Lett. 82, 2788 (1999)

    Article  ADS  Google Scholar 

  11. M. Lee, T. Jonckheere, T. Martin, Phys. Rev. Lett. 101, 146804 (2008)

    Article  ADS  Google Scholar 

  12. I.A. Sadovskyy, D. Chevallier, T. Jonckheere, M. Lee, S. Kawabata, T. Martin, Phys. Rev. B 84, 184513 (2011)

    Article  ADS  Google Scholar 

  13. G.-Q. Zha, X.-M. Liang, S.-P. Zhou, Solid State Commun. 173, 42 (2013)

    Article  ADS  Google Scholar 

  14. G.-Q. Zha, S.-P. Zhou, Europhys. Lett. 112, 27009 (2015)

    Article  ADS  Google Scholar 

  15. S.S. Pershoguba, K. Bjornson, A.M. Black-Schaffer, A.V. Balatsky, Phys. Rev. Lett. 115, 116602 (2015)

    Article  ADS  Google Scholar 

  16. J. Jang, D.G. Ferguson, V. Vakaryuk, R. Budakian, S.B. Chung, P.M. Goldbart, Y. Maeno, Science 331, 186 (2011)

    Article  ADS  Google Scholar 

  17. N. Read, D. Green, Phys. Rev. B 61, 10267 (2000)

    Article  ADS  Google Scholar 

  18. X. Cai, Y.A. Ying, N.E. Staley, Y. Xin, D. Fobes, T.J. Liu, Z.D. Mao, Y. Liu, Phys. Rev. B 87, 081104(R) (2013)

    Article  ADS  Google Scholar 

  19. G.-Q. Zha, Z.-L. Yang, Y.-Y. Jin, S.-P. Zhou, Phys. Rev. B 94, 094510 (2016)

    Article  ADS  Google Scholar 

  20. G.-Q. Zha, Y.-Y. Jin, Europhys. Lett. 120, 27002 (2017)

    Article  ADS  Google Scholar 

  21. P.G. de Gennes, Superconductivity of metals and alloys (Addison-Wesley, New York, 1994)

  22. D.F. Agterberg, T.M. Rice, M. Sigrist, Phys. Rev. Lett. 78, 3374 (1997)

    Article  ADS  Google Scholar 

  23. M.E. Zhitomirsky, T.M. Rice, Phys. Rev. Lett. 87, 057001 (2001)

    Article  ADS  Google Scholar 

  24. M. Takigawa, M. Ichioka, K. Machida, Phys. Rev. B 65, 014508 (2001)

    Article  ADS  Google Scholar 

  25. J.-W. Huo, F.-C. Zhang, Phys. Rev. B 87, 134501 (2013)

    Article  ADS  Google Scholar 

  26. G.-Q. Zha, Phys. Rev. B 95, 014510 (2017)

    Article  ADS  Google Scholar 

  27. A.A. Shanenko, M.D. Croitoru, R.G. Mints, F.M. Peeters, Phys. Rev. Lett. 99, 067007 (2007)

    Article  ADS  Google Scholar 

  28. M.D. Croitoru, A.A. Shanenko, F.M. Peeters, Phys. Rev. B 76, 024511 (2007)

    Article  ADS  Google Scholar 

  29. L.-F. Zhang, L. Covaci, M.V. Milosevic, G.R. Berdiyorov, F.M. Peeters, Phys. Rev. Lett. 109, 107001 (2012)

    Article  ADS  Google Scholar 

  30. H. Hu, L. Jiang, H. Pu, Y. Chen, X.-J. Liu, Phys. Rev. Lett. 110, 020401 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiao Zha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, GQ., Zhan, Z. & Zhou, SP. Effect of magnetic impurities in chiral p-wave superconducting nanoloops. Eur. Phys. J. B 91, 116 (2018). https://doi.org/10.1140/epjb/e2018-90018-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90018-8

Keywords

Navigation