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Abstract. With Casimir and electrostatic forces playing a crucial role for the performance and stability
of microelectromechanical systems (MEMS), the presence of chaotic behavior, which is often unavoidable,
leads to device malfunction due to stiction. Therefore, we investigate here how the optical properties
of different materials influence the chaotic behavior of electrostatic torsional MEMS due to changes in
magnitude of the Casimir forces and torques. We consider the materials Au, which is a good conductor,
AIST, which is a phase change material being close to metal in the crystalline state, and finally doped SiC
as a very poor conductor. For the conservative systems, there is no chaotic behavior and the analysis of
phase portraits and bifurcation diagrams reveal the strong sensitivity of stable actuation dynamics on the
material optical properties, while applied electrostatic potentials lead faster to instability and stiction for
higher conductivity materials. For the driven systems, the Melnikov method is used to study the chaotic
behavior. The results from this method are supported by the study of the contours of the transient time to
stiction in the phase plane, which reveal a substantially increased chaotic behavior for higher conductivity
materials, associated with stronger Casimir torques and applied electrostatic potentials.

1 Introduction

Dispersion forces, also known as van der Waals and
Casimir forces, are omnipresent in nature and become
dominant when the bodies are separated by distances
smaller than 100 nm [1]. With the advancement in
fabrication and miniaturization of MEMS technology
towards nanoelectromechanical systems (NEMS) [2–9],
deep understanding of stiction phenomena and correct
estimation of the magnitude of the Casimir force is cru-
cial for the analysis and design of MEMS/NEMS involving
complex materials. This is because these systems have
sufficiently large surface areas and gaps small enough for
Casimir forces and torques to play a significant role caus-
ing device malfunction due to permanent adhesion, known
as stiction, of moving components. Therefore, strategies to
reduce stiction are widely studied in an attempt to ensure
stable device performance, and long-term predictability
for complex MEMS/NEMS designs.

One of the most prominent methods of device actu-
ation is electrostatic, where inevitably Casimir forces
and torques could play a role [3,10–14]. Although the
electrostatic forces can be switched off when no poten-
tial is applied, the Casimir forces are omnipresent and
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can influence the actuation dynamics of devices. The
Casimir force was predicted by Casimir in 1948 [15]
where he proved that two perfectly conducting parallel
plates, separated by a gap d, attract each other via the
force FCas = π2~c/240d4 due to perturbation of vacuum
fluctuations of the electromagnetic (EM) field. Here ~
and c are the Planck constant and the speed of light,
respectively. Soon after Lifshitz and co-workers [16,17]
considered the general case of dielectric plates by exploit-
ing the fluctuation-dissipation theorem, which relates the
dissipative properties of the plates (optical absorption by
many microscopic dipoles) and the resulting EM fluctua-
tions. In terms of the Lifshitz theory [16,17] the van der
Waals and Casimir forces are the short and long range
limits, respectively, of the same force. In torsional sys-
tems these forces generate mechanical Casimir torques
that have to be taken into account during the analysus
of actuation dynamics.

Torsional MEMS, which find applications in torsional
radio frequency (RF) switches, tunable torsional capaci-
tors, torsional micro mirrors, and high precision Casimir
force measurements [2–6], are viewed as a cantilever type,
where of the two electrodes one is fixed and the other
is able to rotate around an axis [18]. By simply apply-
ing a voltage, both the electrostatic and the mechanical
Casimir torques, which originate from the normal Casimir
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Fig. 1. Dielectric functions at imaginary frequencies ε (iξ) for
Au, SiC, and crystalline (C) AIST (PCM (C)). The inset shows
the schematic of the torsional system.

force [19–24], can rotate the movable electrode towards
the fixed one. However, under certain conditions it can
undergo jump-to-contact, which could lead to stiction [25].
Furthermore, the design of MEMS can be quite challeng-
ing due to the occurrence of chaotic behavior, which causes
abrupt changes in their dynamical behavior, and as a
result device malfunctions. Hence, more detailed knowl-
edge about the phenomena of stiction and its relation
to chaos is necessary to improve the performance and
design of MEMS devices. So far, however, there is lim-
ited knowledge on how the Casimir forces-torques between
actuating components at close proximity (typically less
than 200 nm) can lead to chaotic behavior when chang-
ing the strength of the force via the optical properties of
interacting materials, and possibly in presence of applied
electrostatic potentials.

Therefore, we investigate here theoretically how the
change in optical properties of materials, corresponding
to several orders of magnitude change in material con-
ductivity and subsequently of the Casimir torque [26–29],
can influence the chaotic behavior of torsional MEMS tak-
ing into account electrostatic torques. The choice of the
materials in the present study (see Fig. 1) is motivated
by requiring them to have the following properties: (i) the
application of electrostatic voltage is feasible [5,6,29–36],
(ii) they are used in actuating devices, and (iii) they
show significantly diverse values of their conductivity ratio
ω2
p/ωτ with ωp the plasma frequency, and ωτ the damp-

ing factor in terms of the Drude model that is used
to fit the low frequency optical data in Casimir stud-
ies [5,6,29–36]. The measured optical properties of these
materials are used as input for the theory calculations of
dynamic actuation.

2 Modeling of dynamical system

For our purpose, Au was used as a material due to its high
conduction ratio ωp

2/ωτ |Au ≈ 1600 eV and its frequent

use in devices [5,6,30]. As an intermediate conductivity
system we used the crystalline (C) state of the phase
change material (PCM) AIST (Ag5In5Sb60Te30). The lat-
ter is used in optical data storage (Blue-Rays, DVDs, etc.)
and analysis of the optical data for Casimir studies, with
a measured force contrast ∼25% between the amorphous
(A) and crystalline (C) states, yields the conductivity
ratio ωp

2/ωτ |AIST(C) = 10.1 eV [29]. As a poor conductor
we use nitrogen doped SiC, which is suitable for oper-
ation in harsh environments and an important element
in Si-based technologies [34,35]. Analysis of optical data
gives for SiC the conductivity ratio ωp

2/ωτ |SiC = 0.4 eV
[34]. The corresponding dielectric functions ε(iξ) at imag-
inary frequencies, which are necessary as input for the
calculations of the Casimir force via Lifshitz theory (see
Appendix A), are shown in Figure 1.

Furthermore, we consider the electrostatic torsional
actuator shown in the inset of Figure 1, where only
the upper plate is rotatable (and stiff enough to resist
any buckling by the applied torques). The fixed plate is
assumed to be coated by Au, while the rotatable one
by the materials of interest Au, SiC, and AIST (C)
(with coating thickness in all cases more than 100 nm
to ensure optically bulk materials) [30,34]. For simplic-
ity, we consider flat plates because at short separations
(<100 nm) nanoscale roughness can have significance
influence [26,37–39]. The initial distance when the plates
are parallel is assumed to be d = 200 nm, and the system
temperature T = 300 K. The equation of motion for the
torsional system is given by

I0
d2θ

dt2
+ εI0

ω0

Q

dθ

dt
= τres + τelec + τCas + ετ0cos (ωt) , (1)

where I0 is the rotation moment of inertia of the rotating
plate. The term I0 (ω/Q) (dθ/dt) in equation (1) is due to
the intrinsic energy dissipation of the moving plate with Q
the quality factor of the system. The frequency is assumed
to be typical like in AFM cantilevers and MEMS [2–6].
The motion is conservative for ε = 0, while for ε = 1 we
have forced non-conservative motion.

In equation (1) the torsional restoring torque τres is
given by τres = kθ with the torsional angle, which is con-
sidered positive as the plates move closer to each other. k
is the torsional spring constant around the support point
allowing rotation of the rest of the beam [31–33,40–43].
τelec is the electrostatic torque when a voltage Va is applied
between the two electrodes, and it is given by [21,22]

τelec =
1

2
ε0Ly(Va − Vc)2

1

sin2 (θ)

[
ln

(
d−Lxsin (θ)

d

)
+

Lxsin2 (θ)

d−Lxsin2 (θ)

]
. (2)

Vc is the contact potential difference between the coating
materials of the fixed and rotatable plate. In the following
we will consider only the potential difference V = V a−Vc
for the torque calculations. Finally the mechanical Casimir
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Fig. 2. (a) Bifurcation diagrams δCas vs. with δv = 0 (the
inset shows similar plots for δv = 0.3). The solid and dashed
lines represent the stable and unstable points respectively. (b)
Bifurcation diagrams δv vs. for δCas = 0.08.

torque τCas, which acts on the rotating plate, is given
by [24]

τCas =

∫ Lx

0

rFCas (d′)Lydr, (3)

where FCas (d) is the Casimir force that is calculated using
Lifshitz theory (see Appendix A), and d′ = d− r sin θ with
d the distance for parallel plates of width and length Lx
and Ly. We choose Lx = Ly = 10µm and d = 200 nm
so that the maximum torsional angle θ0 remains small
(θ0 = d/Lx = 0.02 � 1) in order to ignore also any
buckling of the moving beam.

Furthermore, we introduce the Casimir bifurcation
parameter δCas = τmCas/kθ0, which represents the ratio
of the minimum Casimir torque τmCas = τCas (θ = 0)
and the maximum restoring torque kθ0 [44,45], and
the bifurcation parameter for the electrostatic force
δv =

(
ε0V

2LyL
3
x

)
/
(
2kd3

)
[13,14,20]. Using δCas and δv

equation (1) assumes the more convenient form

d2ϕ

dT 2
+ ε

1

Q

dϕ

dT
= −ϕ+ δv

1

ϕ2

[
ln (1−ϕ) +

ϕ

1−ϕ

]
+δCas

[
τcas
τmCas

]
+ ε

τ0
τMax
res

cos

(
ω

ω0
T

)
(4)

with ϕ = θ/θ0, T =ω0t, and I =I0/k.

3 Results and discussion

3.1 Conservative system (ε = 0)

The equilibrium points for conservative motion are
obtained by the condition τtotal = τres + τelec + τCas = 0.
The latter yields from equation (4)

− ϕ+ δv
1

ϕ2

[
ln (1−ϕ) +

ϕ

1−ϕ

]
+ δCas

[
τcas
τmCas

]
= 0. (5)

Figure 2 shows plots of δCas, δv vs. for all materials stud-
ied here. The solid lines in Figure 2a show stable regions
where the restoring torque τres is strong enough to pro-
duce a stable equilibrium point near which the motion is
periodic since δCas ∼ 1/k. The dash lines indicate unsta-
ble regions, where the equilibrium of the torsional system
is unstable, and the moving beam undergoes stiction due
to motion close to the fixed plate. The situation is qualita-
tively similar in presence of an electrostatic voltage (inset
Fig. 2a). If the applied voltage increases then δMAX

Cas also
decreases. Due to the attractive nature of the electrostatic
force, the device would require a higher restoring torque to
preserve stable motion of the system. The presence of two
equilibrium points occurs if δCas < δMAX

Cas . The equilibrium
point closer to ϕ = 0 (solid line) is stable and the other
one closer to ϕ = 1 (dashed line) is unstable. When δCas

reaches δMAX
Cas for the torsional system with higher conduc-

tivity materials, it is still δCas < δMAX
Cas for the other less

conductive materials yielding two equilibrium points and
ensuring increased possibility for stable motion. Moreover,
voltage bifurcation analysis gives useful information about
the device dynamics. Figure 2b shows the sensitive depen-
dence of the bifurcation parameter δv on materials. Not
only the maximum δMAX

v decreases, but also the distance
between the stable and unstable equilibrium points with
increasing material conductivity. In all cases, the range of
bifurcation parameters to produce stable periodic motion
(0 < δCas < δMAX

Cas and δv ≥ 0) decreases for increasing
material conductivity.

Further information about the dynamics can be
obtained from the phase diagrams dϕ/dt vs. ϕ. For a
conservative system, the homoclinic orbit separates sta-
ble motion that manifests itself as continuous oscillation
around the stable equilbirum from unstable motion across
the unstable equilibrium point which leads to stiction. The
homoclinic orbit is the orbit which connects the unstable
equilibrium in the limit of infinite positive or negative time
to itself. Hence, only the initial conditions in the region of
the phase plane, which is enclosed by the homoclinic orbit,
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Fig. 3. Phase portrait dϕ/dt vs. ϕ (with δCas = 0.08, left column δv = 0, and right column δv = 0.07) for the conservative system.
For the calculations we used 150 × 150 initial conditions (ϕ, dϕ/dt). The red region shows that initial condition for which the
torsional device shows stable motion after 100 oscillations. The homoclinic orbit separates sharply stable and unstable solutions
also reflecting the absence of chaotic behavior.

result in stable oscillatory motion. For any other initial
conditions in the region outside the homoclinic orbit, the
moving beam will perform unstable motion and collapse
onto the ground plate within one period. As for any con-
servative system with one degree of freedom, the motion
is not chaotic. However, according to Figure 3, for the
less conductive material the size of the region enclosed
by the homoclinic orbit is larger leading to a wider range
for stable operation. In addition, any application of volt-
age strongly reduces the size of the region enclosed by
the homoclinic orbit, and consequently the range of ini-
tial conditions that favor stable motion as the material
conductivity increases.

3.2 Non-conservative system (ε = 1)

Here we investigate the existence of chaotic behavior of
the torsional system of finite quality factor Q during
forced oscillation via an applied external torque τocos (ωt)
[38]. In this case the the separatrix (homoclinic orbit) of
the conservative system “splits”. For the driven system,
the unstable equilibrium turns into an unstable periodic
orbit. The splitting of the separatrix means that the orbits

which asymptotically reach the unstable periodic orbit
in the forward and backward time directions no longer
coincide. These orbits now form the unstable and sta-
ble manifolds of the unstable periodic orbit, respectively.
Chaotic motion occurs if the stable and unstable mani-
folds have a transversal intersection. This condition can
be investigated by the Melnikov method [38,46]. If we
denote the homoclinic solution of the conservative system
as ϕChom (T ), then the Melnikov function for the torsional
system is given by [38,46]

M (T0) =
1

Q

∫ +∞

−∞

(
dϕChom (T )

dT

)2

dT +
τ0

τMAX
res

×
∫ +∞

−∞

dϕChom (T )

dT
cos

[
ω

ω0
(T+T0)

]
dT . (6)

The stable and unstable manifolds have a transverse
intersection if the Melnikov function has simple zeros, i.e.
M (T0) = 0 and M ′ (T0) 6= 0. If M (T0) has no zeros, then
the motion will not be chaotic. The conditions of nonsim-
ple zeros, M (T0) = 0 and M ′ (T0) = 0 gives the threshold
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Fig. 4. Threshold curve α (= γω0θ0/τ0) vs. driving frequency
ω/ωo (with ωo the natural frequency of the system). The area
bellow the curve corresponds to parameters that lead to chaotic
motion (δCas = 0.08, (a) δv = 0 and (b) δv = 0.07).

condition for chaotic motion [38,46]. If we define

µchom =

∫ +∞

−∞

(
dϕChom (T )

dT

)2

dT

and β (ω) =

∣∣∣∣H [R(F {dϕChom (T )

dT

})]∣∣∣∣ , (7)

then the threshold condition for chaotic motion α =
β(ω)/µchom with α = γω0θ0/τ0 = (1/Q)

(
τ0/τ

MAX
res

)−1
obtains the form

α =
γω0θ0

τ0
=

∣∣∣H [R(F {dϕC
hom(T )
dT

})]∣∣∣
×
∫ +∞

−∞

(
dϕChom (T )

dT

)2

dT , (8)

where γ = Iωo/Q, and H [. . .] denotes the Hilbert trans-
form [38,46].

Fig. 5. Threshold curve α (γω0θ0/τ0) vs. driving frequency
ω/ωo (with ωo the natural frequency of the system) for (a)
Au-Au and (b) Au-SiC. The area below the curve corresponds
to parameters that lead to chaotic motion.

Figure 4 shows the threshold curves α = γω0θ0/τ0 vs.
driving frequency ratio ω/ωo. For large values of α (above
the curve), the dissipation dominates the driving torque
leading to regular motion that asymptotically approaches
the stable periodic orbit resulting from the stable equi-
librium point of the conservative system. However, for
parameter values below the curve, the transversal intersec-
tions of the stable and unstable manifolds causes chaotic
motion. Clearly for systems with higher conductivity,
which lead to stronger Casimir torques, chaotic motion
is more likely to occur as it is manifested by the larger
area below the threshold curve. Figure 4b shows the strong
dependence of the region below the threshold curve, which
corresponds to chaotic motion, on the applied voltage. The
presence of an electrostatic torque changes the thresh-
old curves, which is further amplified by the increasing
material conductivity. According to Figure 5 the largest
change for the threshold condition belongs to Au-Au sys-
tem, which has the highest conductivity, while for the
Au-Sic system it is drastically weaker for the same applied
voltage.

Indeed, the chaotic behavior is shown by the contours
of the transient times to stiction in the phase plane in
Figure 6 for different values of the threshold parameter for

https://epjb.epj.org/
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Fig. 6. Contour plot of the transient times to stiction in the phase plane dϕ/dt vs. (δCas = 0.08, δv = 0) for the non-conservative
system for α = 1 (left column) and α = 0.2 (right column). For the calculations we used 150 150 initial conditions (ϕ, dϕ/dt).
The red region shows that initial condition for which the torsional device shows still stable motion after 100 oscillations. With
decreasing the chaotic behavior increases, and the area of stable motion (red region) shrinks more for the systems with higher
conductivity.

all materials studied here. If we compare with Figure 3,
where chaotic motion does not occur, the latter plots show
that chaotic motion takes place since there is no a sim-
ple smooth boundary between the red and the dark-blue
regions. Chaotic behavior introduces significant risk for
stiction, prohibiting long term prediction of the behavior
of the oscillating system being more evident for material
systems with higher conductivity or equivalently higher
Casimir torques. In addition, as in Figure 5 for the thresh-
old curves, the transient times to stiction in Figure 7 show
the sensitive dependence of chaotic motion on the applied
electrostatic potential for the Au-Au and Au-SiC systems.
Again it is confirmed that any voltage application will
strongly influence the chaotic behavior of the system hav-
ing a dramatic effect for the higher conductivity materials
(i.e. Au-Au system).

4 Conclusions

In conclusion, chaotic behavior, which is often unavoidable
and leads to device malfunction, is strongly dependent

on material conductivity and optical properties leading
to different Casimir interactions, as well as on the applied
electrostatic voltages. For conservative motion, phase por-
traits and bifurcation analysis show the strong sensitivity
of actuation dynamics on the optical properties of inter-
acting materials, where applied electrostatic forces lead
faster to instability. For the driven systems, the Mel-
nikov method in agreement with contours of the transient
times to stiction revealed that an increasing material
conductivity leads to stronger Casimir torques and sub-
sequently more extensive chaotic behavior. The latter
is strongly enhanced with applied electrostatic poten-
tials. Since chaotic behavior leads to increased possibility
for stiction prohibiting long term prediction of actuation
dynamics, it becomes evident that characterization of the
optical properties and conductivity of interacting materi-
als is crucial for the design of dynamical microsystems.

GP and MS acknowledge support from the Zernike Insti-
tute of Advanced Materials, University of Groningen, The
Netherlands. FT and AAM acknowledge support from the
Department of Physics, Alzahra University, Iran.
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Fig. 7. Contour plot of the transient times to stiction in the phase plane dϕ/dt vs. ϕ (δCas = 0.08, α = 1) of the non-conservative
system with δv = 0 (left column) and δv = 0.07 (right column) for Au-Au and Au-SiC systems. For the calculations we used
150 × 150 initial conditions (ϕ, dϕ/dt). The red region shows the initial conditions for which the torsional device shows stable
motion after 100 oscillations. With oscillating frequency ω/ω0 = 0.5. With increasing δv (or equivalently applied voltage) the
chaotic behavior increases, and the area of stable motion shrinks more for the systems with higher conductivity and applied
potential.
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Appendix A: Brief Lifshitz theory and
dielectric function of materials with
extrapolations

The Casimir force FCas(d) in equation (3) is given by
[16,17]

FCas(d) =
kBT

π

∑
′
l=0

∑
ν

= TE, TM

∫ ∞
0

dk⊥k⊥k0

× r
(1)
ν r

(2)
ν exp (−2k0d)

1− r(1)ν r
(2)
ν exp (−2k0d)

. (A.1)

The prime in the first summation indicates that
the term corresponding to l = 0 should be multiplied
with a factor 1/2. The Fresnel reflection coefficients

are given by r
(i)
TE = (k0 − ki)/(k0 + ki) and r

(i)
TM =

(εi k0 − ε0 ki)/(εik0 + ε0ki) for the transvers electric

(TE) and magnetic (TM) field polarizations, respec-

tively. ki (i = 0, 1, 2) =
√
εi (iξl) + k2⊥ represents the out-

off plane wave vector in the gap between the interacting
plates (k0) and in each of the interacting plates (ki=(1,2)).
k⊥ is the in-plane wave vector.

The function ε(iξ) is the dielectric function evaluated
at imaginary frequencies, which is the necessary input for
calculating the Casimir force between real materials using
Lifshitz theory. The latter is given by [16,17]

ε (iξ) = 1 +
2

π

∫ ∞
0

ωε′′(ω)

ω2 + ξ2
dω. (A.2)

For the calculation of the integral in equation (A.2) one
needs the measured data for the imaginary part ε′′ (ω)
of the frequency dependent dielectric function ε (ω). The
materials were optically characterized by ellipsometry over
a wide range of frequencies at J. A.Woollam Co. using the
VUV-VASE (0.5–9.34 eV) and IR-VASE (0.03–0.5 eV))
[26,29,34,35]. In any case the experimental data for the
imaginary part ε′′ (ω) of the dielectric function cover
only a limiting range of frequencies ω1(= 0.03 eV) < ω <
ω2(= 8.9 eV). Therefore, for the low optical frequencies
(ω < ω1 ) we extrapolated using the imaginary part of
the Drude model [26,29,34,35]

ε′′L (ω) =
ω2
pωτ

ω
(ω2 + ω2

τ ), (A.3)

where ωp is the plasma frequency, and ωτ is the relaxation
frequency. Furthermore, for the high optical frequencies
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(ω > ω2) we extrapolated using [26,29,34,35]

ε′′H (ω) =
A

ω3
. (A.4)

Finally, using equations (A.2)–(A.4), ε(iξ) is given by

ε(iξ)C = 1 +
2

π

∫ ω2

ω1

ωε′′exp(ω)

ω2 + ξ2
dω

+∆Lε(iξ) +∆Hε (iξ) , (A.5)

with

∆Lε (iξ) =
2

π

∫ ω1

0

ωε′′L(ω)

ω2 + ξ2
dω,

and ∆Hε (iξ) =
2

π

∫ ∞
ω2

ωε′′H(ω)

ω2 + ξ2
dω. (A.6)
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42. S.R. Decca, D. López, E. Fischbach, G.L. Klimchitskaya,
D.E. Krause, V.M. Mostepanenko, Phys. Rev. D 75,
077101 (2007)

43. O. Degani, E. Socher, A. Lipson, T. Lejtner, D.J. Setter,
Sh. Kaldor, Y. Nemirovsky, J. Microelectromech. Syst. 7,
373 (1998)

44. M. Sedighi, W.H. Broer, G. Palasantzas, B.J. Kooi, Phys.
Rev. B 88, 165423 (2013)

45. S. Cui, Y.C. Soh, J. Microelectromech. Syst. 19, 1153
(2010)

46. J. Guckenheimer, P. Holmes, Nonlinear oscillations,
dynamical systems, and bifurcations of vector fields
(Springer, Berlin, Heidelberg, New York, 1983)

https://epjb.epj.org/

	Dependence of chaotic actuation dynamics of Casimir oscillators on optical properties and electrostatic effects
	1 Introduction
	2 Modeling of dynamical system
	3 Results and discussion
	3.1 Conservative system (=0)
	3.2 Non-conservative system (=1)

	4 Conclusions

	Author contribution statement
	Appendix A Brief Lifshitz theory and dielectric function of materials with extrapolations

	References

