Skip to main content
Log in

Superconducting properties of molybdenum ruthenium alloy Mo0.63Ru0.37

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Resistance, magnetization and specific heat measurements were performed on Mo0.63Ru0.37 alloy. All of them confirm that Mo0.63Ru0.37 becomes superconducting at about 7.0 K with bulk nature. Its upper critical field behavior fits to Werthamer-Helfand-Hohenberg (WHH) model quite well, with an upper critical field of μ0Hc2(0) = 8.64 T, less than its Pauli limit. Its electronic specific heat is reproduced by Bardeen-Cooper-Schriffer (BCS)-based α-model with a gap ratio Δ0 = 1.88k B T c , which is a little larger than the standard BCS value of 1.76. We concluded that Mo0.63Ru0.37 is a fully gapped isotropic s-wave superconductor, with its features are mostly consistent with the conventional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  2. M.W. Haverkort, I.S. Elfimov, L.H. Tjeng, G.A. Sawatzky, A. Damascelli, Phys. Rev. Lett. 101, 026406 (2008)

    Article  ADS  Google Scholar 

  3. K.K. Ng, M. Sigrist, Europhys. Lett. 49, 473 (2000)

    Article  ADS  Google Scholar 

  4. P.A. Frigeri, D.F. Agterberg, A. Koga, M. Sigrist, Phys. Rev. Lett. 92, 097001 (2004)

    Article  ADS  Google Scholar 

  5. S. Harada, J.J. Zhou, Y.G. Yao, Y. Inada, G.-Q. Zheng, Phys. Rev. B 86, 220502(R) (2012)

    Article  ADS  Google Scholar 

  6. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  7. L.M. Roth, Phys. Rev. 173, 755 (1968)

    Article  ADS  Google Scholar 

  8. E.I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960)

    Google Scholar 

  9. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  10. E. Bauer, M. Sigrist (Eds.), Non-centrosymmetric superconductors: introduction and overview (Springer, Berlin, 2012)

  11. W. Li, C. Jin, R. Che, W. Wei, L. Lin, H. Du, M. Tian, J. Zang, Phys. Rev. B 93, 060409(R) (2016)

    Article  ADS  Google Scholar 

  12. W. Wei, G.J. Zhao, D.R. Kim, C. Jin, J.L. Zhang, L. Ling, L. Zhang, H. Du, T.Y. Chen, J. Zang, M. Tian, C.L. Chien, Y. Zhang, Phys. Rev. B 94, 104503 (2016)

    Article  ADS  Google Scholar 

  13. H. Takeya, M. ElMassalami, S. Kasahara, K. Hirata, Phys. Rev. B 76, 104506 (2007)

    Article  ADS  Google Scholar 

  14. C.P. Poole, Handbook of superconductivity (Academic Press, London, 2000)

  15. E. Bauer, G. Rogl, X.Q. Chen, R.T. Khan, H. Michor, G. Hilscher, E. Royanian, K. Kumagai, D.Z. Li, Y.Y. Li, R. Podloucky, P. Rogl, Phys. Rev. B 82, 064511 (2010)

    Article  ADS  Google Scholar 

  16. V.H. Tran, W. Miiller, Z. Bukowski, Phys. Rev. Lett. 100, 137004 (2008)

    Article  ADS  Google Scholar 

  17. V. Yu. Verchenko, A.A. Tsirlin, A.O. Zubtovskiy, A.V. Shevelkov, Phys. Rev. B 93, 064501 (2016)

    Article  ADS  Google Scholar 

  18. F.J. Morin, J.P. Maita, Phys. Rev. 129, 1115 (1963)

    Article  ADS  Google Scholar 

  19. S. Barišić, J. Labbé, J. Friedel, Phys. Rev. Lett. 25, 919 (1970)

    Article  ADS  Google Scholar 

  20. W.L. Johnson, S.J. Poon, J. Durand, P. Duwez, Phys. Rev. B 18, 206 (1978)

    Article  ADS  Google Scholar 

  21. R. Gürler, J. Alloys Compd. 285, 133 (1999)

    Article  Google Scholar 

  22. S.E. Rasmussen, B. Lundtoft, Powder Diffr. 2, 29 (1987)

    Article  ADS  Google Scholar 

  23. N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966)

    Article  ADS  Google Scholar 

  24. H. Padamsee, J. E Neighbor, C.A. Shiffman, J. Low Temp. Phys. 12, 387 (1973)

    Article  ADS  Google Scholar 

  25. A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004

  26. B.H. Toby, J. Appl. Crystallogr. 34, 210 (2010)

    Article  Google Scholar 

  27. P. Villars, K. Cenzual (Eds.), Mo5 Ru3(Mo0.6Ru0.4 ht) crystal structure: datasheet from “PAULING FILE Multinaries Edition – 2012” in Springer Materials Springer-Verlag Berlin Heidelberg, and Material Phase Data System (MPDS), Switzerland, and National Institute for Materials Science (NIMS), Japan

  28. M. Zehetmayer, Supercond. Sci. Technol. 26, 043001 (2013)

    Article  ADS  Google Scholar 

  29. M. Tinkham, Introduction to superconductivity, 2nd edn. (Dover Publications Inc., New York, 2004), pp. 64–66

  30. F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979)

    Article  ADS  Google Scholar 

  31. C.P. Poole Jr. H.A. Farach, R.J. Creswick, R. Prozorov, Superconductivity (Academic Press, Singapore, 2007), pp. 97–107

  32. W.L. Johnson, J. Appl. Phys. 50, 1557 (1979)

    Article  ADS  Google Scholar 

  33. B. Mühlschlegel, Z. Phys. 155, 313 (1959)

    Article  ADS  Google Scholar 

  34. W.L. McMillan, Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  35. A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003)

    Article  ADS  Google Scholar 

  36. Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, K. Ishida, J. Phys. Soc. Jpn. 81, 011009 (2012)

    Article  ADS  Google Scholar 

  37. Y. Liu, Z.-Q. Mao, Physica C 514, 339 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Ge, M., Wang, S. et al. Superconducting properties of molybdenum ruthenium alloy Mo0.63Ru0.37. Eur. Phys. J. B 91, 56 (2018). https://doi.org/10.1140/epjb/e2018-80714-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80714-8

Keywords

Navigation