Skip to main content
Log in

Effects of geometrical frustration on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The small-cluster exact-diagonalization calculations and the projector quantum Monte Carlo method are used to examine the competing effects of geometrical frustration and interaction on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. It is shown that the geometrical frustration stabilizes the ferromagnetic state at high electron concentrations (n ≳ 7∕4), where strong correlations between ferromagnetism and the shape of the noninteracting density of states are observed. In particular, it is found that ferromagnetism is stabilized for these values of frustration parameters, which lead to the single-peaked noninterating density of states at the band edge. Once, two or more peaks appear in the noninteracting density of states at the band edge the ferromagnetic state is suppressed. This opens a new route towards the understanding of ferromagnetism in strongly correlated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  2. Y. Nagaoka, Phys. Rev. 147, 392 (1966)

    Article  ADS  Google Scholar 

  3. E. Müller-Hartmann, J. Low. Temp. Phys. 99, 342 (1995)

    Article  Google Scholar 

  4. E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Ulmke, Eur. Phys. J. B 1, 301 (1998)

    Article  ADS  Google Scholar 

  6. S. Pandey, A. Singh, Phys. Rev. B 75, 064412 (2007)

    Article  ADS  Google Scholar 

  7. P. Pieri, Mod. Phys. Lett. B 10, 1277 (1996)

    Article  ADS  Google Scholar 

  8. M. Salerno, Z. Phys. B 99, 469 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Farkašovský, Phys. Rev. B 66, 012404 (2002)

    Article  ADS  Google Scholar 

  10. P. Farkašovský, H. Čencariková, Cent. Eur. J. Phys. 11, 119 (2013)

    Google Scholar 

  11. P. Farkašovský, EPL 110, 47007 (2015)

    Article  ADS  Google Scholar 

  12. A. Mielke, J. Phys. A 25, 4335 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Tasaki, Phys. Rev. Lett. 69, 1608 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Mielke, H. Tasaki, Commun. Math. Phys. 158, 341 (1993)

    Article  ADS  Google Scholar 

  15. H. Tasaki, Prog. Theor. Phys. 99, 498 (1998)

    Article  ADS  Google Scholar 

  16. H. Katsura, I. Maruyama, A. Tanaka, H. Tasaki, EPL 91, 57007 (2010)

    Article  ADS  Google Scholar 

  17. H. Tasaki, Phys. Rev. Lett. 73, 1158 (1994)

    Article  ADS  Google Scholar 

  18. A. Mielke, Phys. Rev. Lett. 82, 4312 (1999)

    Article  ADS  Google Scholar 

  19. A. Tanaka, H. Ueda, Phys. Rev. Lett. 90, 067204 (2003)

    Article  ADS  Google Scholar 

  20. M. Maksymenko, A Honecker, R. Moessner, J. Richter, O. Derzhko, Phys. Rev. Lett. 109, 096404 (2012)

    Article  ADS  Google Scholar 

  21. B.S Shastry, B. Sutherland, Physica B and C 108, 1069 (1981)

    Article  ADS  Google Scholar 

  22. H. Kageyama, K. Yoshimura, R. Stern, N.V. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C.P. Slichter, T. Goto, Y. Ueda, Phys. Rev. Lett. 82, 3168 (1999)

    Article  ADS  Google Scholar 

  23. K. Kodama, M. Takigawa, M. Horvatic, C. Berthier, H. Kageyama, Y. Ueda, S. Miyahara, F. Becca, F. Mila, Science 298, 395 (2002)

    Article  ADS  Google Scholar 

  24. S. Yoshii, T. Yamamoto, M. Hagiwara, S. Michimura, A. Shigekawa, F. Iga, T. Takabatake, K. Kindo, Phys. Rev. Lett. 101, 087202 (2008)

    Article  ADS  Google Scholar 

  25. K. Siemensmeyer, E. Wulf, H.J. Mikeska, K. Flachbart, S. Gabani, S. Matas, P. Priputen, A. Efdokimova, N. Shitsevalova, Phys. Rev. Lett. 101, 177201 (2008)

    Article  ADS  Google Scholar 

  26. K. Čenčariková, P. Farkašovský, Phys. Status Solidi C 252, 333 (2015)

    Article  Google Scholar 

  27. A. Mielke, J. Phys. A 24, 3311 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  28. Y. Yanagi, Y. Yamashita, K. Ueda, J. Phys. Soc. Jpn 81 123701 (2012)

    Article  ADS  Google Scholar 

  29. H.D. Liu, H.F. Lin, H.S. Tao, W.M. Liu, Sci. Rep. 4, 4829 (2014) and references therein

    Article  Google Scholar 

  30. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)

    Article  ADS  Google Scholar 

  31. M. Imada, Y. Hatsugai, J. Phys. Soc. Jpn 58, 3752 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Farkašovský.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkašovský, P. Effects of geometrical frustration on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. Eur. Phys. J. B 91, 74 (2018). https://doi.org/10.1140/epjb/e2018-80650-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80650-7

Keywords

Navigation