Skip to main content
Log in

Crown oxygen-doping graphene with embedded main-group metal atoms

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Different main-group metal atoms embedded in crown oxygen-doping graphene (metal@OG) systems are studied by the density functional theory. The binding energies and electronic structures are calculated by using first-principles calculations. The binding energy of metal@OG system mainly depends on the electronegativity of the metal atom. The lower the value of the electronegativity, the larger the binding energy, indicating the more stable the system. The electronic structure of metal@OG arouses the emergence of bandgap and shift of Dirac point. It is shown that interaction between metal atom and crown oxygen-doping graphene leads to the graphene’s stable n-doping, and the metal@OG systems are stable semiconducting materials, which can be used in technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  3. C. Riedl, U. Starke, J. Bernhardt, M. Franke, K. Heinz, Phys. Rev. B 76, 245406 (2007)

    Article  ADS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  5. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006)

    Article  Google Scholar 

  6. J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, E.S. Snow, Nano Lett. 10, 3001 (2010)

    Article  ADS  Google Scholar 

  7. N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, M.F. Crommie, Science 329, 544 (2010)

    Article  ADS  Google Scholar 

  8. N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Adv. Mater. 24, 5782 (2012)

    Article  Google Scholar 

  9. C. Sire, F. Ardiaca, S. Lepilliet, J.W.T. Seo, M.C. Hersam, G. Dambrine, V. Derycke, Nano Lett. 12, 1184 (2012)

    Article  ADS  Google Scholar 

  10. Y. Wu, Y.M. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, P. Avouris, Nature 472, 74 (2011)

    Article  ADS  Google Scholar 

  11. F. Xia, D.B. Farmer, Y. Lin, P. Avouris, Nano Lett. 10, 715 (2010)

    Article  ADS  Google Scholar 

  12. D.E. Jiang, V.R. Cooper, S. Dai, Nano Lett. 9, 4019 (2009)

    Article  ADS  Google Scholar 

  13. B.F. Machado, P. Serp, Catal. Sci. Technol. 2, 54 (2012)

    Article  Google Scholar 

  14. A.N. Andriotis, M. Menon, R.M. Sheetz, L. Chernozatonskii, Phys. Rev. Lett. 90, 026801 (2003)

    Article  ADS  Google Scholar 

  15. B. Sanyal, O. Eriksson, U. Jansson, H. Grennberg, Phys. Rev. B 79, 113409 (2009)

    Article  ADS  Google Scholar 

  16. L. Pisani, B. Montanari, N.M. Harrison, New J. Phys. 10, 033002 (2008)

    Article  ADS  Google Scholar 

  17. M. Woiñska, K.Z. Milowska, J.A. Majewski, Phys. Status Solidi (c) 10, 1167 (2013)

    Article  ADS  Google Scholar 

  18. P. Rani, V.K. Jindal, RSC Adv. 3, 802 (2013)

    Article  Google Scholar 

  19. S. Watcharotone et al., Nano Lett. 7, 1888 (2007)

    Article  ADS  Google Scholar 

  20. G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008)

    Article  Google Scholar 

  21. K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 1015 (2010)

    Article  Google Scholar 

  22. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)

    Article  Google Scholar 

  23. H. Liu, Y. Liu, D. Zhu, J. Mater. Chem. 21, 3335 (2011)

    Article  Google Scholar 

  24. X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, H. Dai, Science 324, 768 (2009)

    Article  ADS  Google Scholar 

  25. A.A. Maarouf et al., J. Chem. Theory Comput. 9, 2398 (2013)

    Article  Google Scholar 

  26. J. Guo, J. Lee, C.I. Contescu, N.C. Gallego, S.T. Pantelides, S.J. Pennycook et al., Nat. Commun. 5, 5389 (2014)

    Article  Google Scholar 

  27. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  28. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  29. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  30. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  32. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  33. L. Pauling, The nature of the chemical bond, 3rd edn. (Cornell University Press, Ithaca, NY, 1960)

  34. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic chemistry: principles of structure and reactivity, 4th edn. (HarperCollins, New York, USA, 1993)

  35. J. Daintith, A dictionary of chemistry, 6th edn. (OUP, Oxford, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wang, Q., Yang, C. et al. Crown oxygen-doping graphene with embedded main-group metal atoms. Eur. Phys. J. B 91, 46 (2018). https://doi.org/10.1140/epjb/e2018-80396-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80396-2

Keywords

Navigation