Skip to main content
Log in

Ab initio study of phonon dispersion and thermodynamic properties of pure and doped pyrites

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Pyrites (FeS2) are solid minerals that are found abundantly in Nigeria and are easy to prepare in laboratories. In this work, FeS2 is studied extensively in its pure state as well as when iron is substitutionally doped with zinc and calcium at concentrations of 0, 0.25, 0.5, 0.75 and 1. Using density functional theory, the eectronic, dynamic and thermodynamic properties were calculated. The results revealed that the lattice parameters and bulk modulus increases with increasing concentration and the obtained values are in agreement with available experimental and theoretical values. Though pyrite, when doped with zinc, obeys Vegard’s law, doping with calcium revealed pronounced deviation from this law. The calculated band structures showed that FeS2 has an indirect band gap whose size decreases after introducing zinc while doping with calcium increases the band gap. The phonon dispersion of the end members FeS2 and ZnS2 indicate that the systems are dynamically stable while CaS2 is dynamically unstate. Also, the thermodynamic properties of the pure and doped pyrites were calculated and the ranges of temperature at which the lattice and electronic degrees of freedom contribute to the specific heat capacity are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.T. Shuey, Semiconductor ore mining: development in economic geology (Elsevier Scientific Publishing Co., Amsterdam, 1975)

  2. RMRDC – Raw Materials Research and Development Council, http://www.rmrdc.gov.ng

  3. Pyrite – Webmineral 2010, http://www.webmineral.com/data/pyrite-shtml

  4. D.S. Inosov, V.B. Zabolotnyy, D.V. Evtushinsky, A.A. Kordyuk, B. Buchner, R. Follath, H. Berger, S.V. Borisenko, New J. Phys. 10, 125027 (2008)

    Article  ADS  Google Scholar 

  5. E. Morosan, H.W. Zandbergen, B.S. Dennis, J.W.G. Bos, Y. Onose, T. Klimezuk, A.P. Ramirez, N.P. Ong, R.J. Cava, Nat. Phys. 2, 544 (2006)

    Article  Google Scholar 

  6. R.C. Morris, Phys. Rev. Lett. 34, 1164 (1995)

    Article  ADS  Google Scholar 

  7. M.R. Hilton, R. Bauer, S.V. Didziulis, M.T. Dugger, J.M. Keem, J. Scholhamer, Surf. Coat. Technol. 53, 13 (1992)

    Article  Google Scholar 

  8. L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, R. Temen, Nature 387, 791 (1997)

    Article  ADS  Google Scholar 

  9. E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J.C. Bernede, J. Tedd, J. Pouzed, J. Salardenne, Sol. Energy Mater. Sol. Cell 46, 115 (1997)

    Article  Google Scholar 

  10. Z. Chen, H. Liu, X. Chen, G. Chu, S. Chu, H. Zhang, Appl. Mater. Interfaces 8, 20267 (2016)

    Article  Google Scholar 

  11. L.F. Mattheis, Phys. Rev. B 8, 3719 (1973)

    Article  ADS  Google Scholar 

  12. N.L. Heda, A. Dashora, A. Marwal, Y. Sharma, S.K. Srivastava, G. Ahmed, R. Jain, B.I. Ahuja, J. Phys. Chem. Solids 71, 187 (2010)

    Article  ADS  Google Scholar 

  13. M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, J. Joannopoulos, Phys. Rev. B 56, 1354 (1997)

    Article  ADS  Google Scholar 

  14. P. Raybaud, J. Hafner, G. Kresse, H. Toulhoat, J. Phys.: Condens. Matter 9, 11107 (1997)

    ADS  Google Scholar 

  15. P. Raybaud, G. Kresse, J. Hafner, H. Toulhoat, J. Phys.: Condens. Matter 9, 11085 (1997)

    ADS  Google Scholar 

  16. S. Lauer, A.X. Trautwein, F.E. Harris, Phys. Rev. B 29, 6774 (1994)

    Article  ADS  Google Scholar 

  17. P. Toulmin, P.B. Barton Jr., Geochim. Cosmochim. Acta 28, 641 (1963)

    Article  ADS  Google Scholar 

  18. R. Sun, G. Ceder, Phys. Rev. B 84, 245211 (2011)

    Article  ADS  Google Scholar 

  19. K.M. Rosso, U. Becker, M.F. Hochella Jr., Am. Mineral. 84, 1535 (1999)

    Article  ADS  Google Scholar 

  20. M. Reich, U. Becker, First principle calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite, Ph.D. thesis, 2004

  21. P. Olsson, J. Vidal, D. Linoot, J. Phys.: Condens. Matter 23, 405801 (2011)

    Google Scholar 

  22. R.J. Bouchard, Mater. Res. Bull. 3, 563 (1968)

    Article  Google Scholar 

  23. T.A. Bither, P.C. Donohue, W.H. Cloud, P.E. Bierstedt, H.S. Young, J. Solid State Chem. 1, 526 (1970)

    Article  ADS  Google Scholar 

  24. M. Born, R. Oppenheimer, Ann. Phys. 389, 457 (1927)

    Article  Google Scholar 

  25. W. Kohn, P. Hohenberg, Phys. Rev. B. 136, 864 (1964)

    Article  Google Scholar 

  26. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  Google Scholar 

  27. Y. Wang, Z.K. Liu, L.Q. Chen, Acta Mater. 52, 2665 (2004)

    Article  Google Scholar 

  28. Z.L. Liu, L.C. Cai, X.R. Chen, Q. Wu, F.Q. Jing, J. Phys.: Condens. Matter 21, 095408 (2009)

    ADS  Google Scholar 

  29. R. Arroyave, Z.K. Liu, Phys. Rev. B 74, 17418 (2006)

    Article  Google Scholar 

  30. T. Mohri, Y. Chen, J. Alloys Compd. 383, 23 (2004)

    Article  Google Scholar 

  31. V.L. Moruzzi, J.F. Janak, K. Schwarz, Phys. Rev. B 37, 790 (1988)

    Article  ADS  Google Scholar 

  32. F. Peng, A.Z. Fu, X.D. Yang, Solid State Commun. 145, 91 (2008)

    Article  ADS  Google Scholar 

  33. S.L. Shang, Y. Wang, Z.K. Liu, Phys. Rev. B 75, 024302 (2007)

    Article  ADS  Google Scholar 

  34. R. Arroyave, D. Shin, Z.K. Liu, Acta Mater. 53, 1809 (2005)

    Article  Google Scholar 

  35. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  36. P. Giannozzi, S. Baroni, N. Bonini, M.C. Calandra, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  37. S. Baroni, P. Giannozzi, E. Isaev, Rev. Mineral. Geochem. 71, 39 (2010)

    Article  Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  39. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  40. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  41. L.Z Vegard, Z. Phys. 5, 393 (1921)

    Article  ADS  Google Scholar 

  42. R. Murphy, D.R. Strongin, Surf. Sci. Rep. 64, 1 (2009)

    Article  ADS  Google Scholar 

  43. M. Blanchard, M. Alfredsson, J. Brodholt, G.D. Price, K. Wright, C.R.A. Catlow, J. Phys. Chem. B 109, 22067 (2005)

    Article  Google Scholar 

  44. T. Belaroussi, T. Benmessabih, F. Hamdache, B. Amrani, Physica B 403, 2649 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gboyega A. Adebayo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musari, A.A., Joubert, D.P., Olowofela, J.A. et al. Ab initio study of phonon dispersion and thermodynamic properties of pure and doped pyrites. Eur. Phys. J. B 90, 254 (2017). https://doi.org/10.1140/epjb/e2017-80508-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80508-6

Keywords

Navigation