Skip to main content
Log in

Strong temperature effect on the sizes of the Cooper pairs in a two-band superconductor

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the temperature dependencies of the mean sizes of the Cooper pairs in a two-band BCS-type s-wave superconductivity model with coupling cut-off in the momentum space. It is found that, in contrast to single-band systems, the size of Cooper pairs in the weaker superconductivity band can significantly decrease with a temperature increase due to an interband proximity effect. The relevant spatial behaviour of the wave functions of the Cooper pairs is analyzed. The results also indicate a possibility that the size of Cooper pairs in two-band systems may increase with an increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.G. de Gennes, in Superconductivity of metals and alloys (W.A. Benjamin Inc., New York/Amsterdam, 1966), p. 96

  2. F. Marsiglio, J.E. Hirsch, Phys. Rev. B 41, 6435 (1990)

    Article  ADS  Google Scholar 

  3. A.J. Leggett, in The physics of superconductors, Superconductivity on nanostructures, high-Tc and novel superconductors, organic superconductors, edited by K.-H. Bennemann, J.B. Ketterson (Springer-Verlag, Berlin, Heidelberg, 2004), Vol. 2, p. 1105

  4. A.J. Leggett, in Quantum liquids: Bose condensation and Cooper pairing in condensed-matter systems (Oxford University Press, New York, 2006), p. 190

  5. F. Palestini, G.C. Strinati, Phys. Rev. B 89, 224508 (2014)

    Article  ADS  Google Scholar 

  6. M. Tinkham, Introduction to superconductivity (McGraw-Hill Inc., New York, 1996)

  7. F. Pistolesi, G.C. Strinati, Phys. Rev. B 49, 6356 (1994)

    Article  ADS  Google Scholar 

  8. L. Salasnich, N. Manini, A. Parola, Phys. Rev. A 72, 023621 (2005)

    Article  ADS  Google Scholar 

  9. A. Guidini, A. Perali, Supercond. Sci. Technol. 27, 214514 (2010)

    Google Scholar 

  10. V.V. Schmidt, in The physics of superconductors, introduction to fundamentals and applications (Springer-Verlag, Berlin, Heidelberg, 1997), p. 25

  11. S. Tsuda, T. Yokoya, Y. Takano, H. Kito, A. Matsushita, F. Yin, J. Itoh, H. Harima, S. Shin, Phys. Rev. Lett. 91, 127001 (2003)

    Article  ADS  Google Scholar 

  12. K. Khasanov, A. Shengelaya, A. Maisuradze, F. La Mattina, A. Bussmann-Holder, H. Keller, K.A. Müller, Phys. Rev. Lett. 98, 057007 (2007)

    Article  ADS  Google Scholar 

  13. J.F. Annett, B.L. Gyorffy, G. Litak, K.I. Wysokinski, Eur. Phys. J. B 36, 301 (2013)

    Article  ADS  Google Scholar 

  14. H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G.F. Chen, J.L. Luo, N.L. Wang, EPL 83, 47001 (2008)

    Article  ADS  Google Scholar 

  15. J. Carlström, E. Babaev, M. Speight, Phys. Rev. B 83, 174509 (2011)

    Article  ADS  Google Scholar 

  16. M. Silaev, E. Babaev, Phys. Rev. B 84, 094515 (2011)

    Article  ADS  Google Scholar 

  17. M. Silaev, E. Babaev, Phys. Rev. B 85, 134514 (2012)

    Article  ADS  Google Scholar 

  18. T. Örd, K. Rägo, A. Vargunin, J. Supercond. Nov. Magn. 25, 1351 (2012)

    Article  Google Scholar 

  19. G. Litak, T Örd, K. Rägo, A. Vargunin, Acta Phys. Pol. A 121, 747 (2012)

    Article  Google Scholar 

  20. E. Babaev, M. Silaev, Phys. Rev. B 72, 180502 (2005)

    Article  ADS  Google Scholar 

  21. F.D. Neto, M.A. Continentino, C. Lacroix, J. Phys.: Condens. Matter 22, 075701 (2010)

    ADS  Google Scholar 

  22. D. Innocenti, N. Poccia, A. Ricci, A. Valletta, S. Caprara, A. Perali, A. Bianconi, Phys. Rev. B 82, 184528 (2010)

    Article  ADS  Google Scholar 

  23. A.V. Chubukov, I. Eremin, D.V. Efremov, Phys. Rev. B 93, 174516 (2016)

    Article  ADS  Google Scholar 

  24. A. Guidini, L. Flammia, M.V. Milošević, A. Perali, J. Supercond. Nov. Magn. 29, 711 (2016)

    Article  Google Scholar 

  25. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990)

    Article  ADS  Google Scholar 

  26. G. Litak, T Örd, K. Rägo, A. Vargunin, Physica C 483, 30 (2012)

    Article  ADS  Google Scholar 

  27. G. Litak, T Örd, K. Rägo, A. Vargunin, Phys. Status Solidi B 251, 697 (2014)

    Article  ADS  Google Scholar 

  28. G. Litak, T. Örd, K. Rägo, A. Vargunin, J. Phys.: Conf. Ser. 833, 012017 (2017)

    Google Scholar 

  29. H. Suhl, B.T. Matthias, L.R. Walker, Phys. Rev. Lett 3, 552 (1959)

    Article  ADS  Google Scholar 

  30. J.E. Hirsch, F. Marsiglio, Phys. Rev. B 39, 11515 (1989)

    Article  ADS  Google Scholar 

  31. M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. B 41, 327 (1990)

    Article  ADS  Google Scholar 

  32. L. Benfatto, A. Toschi, S. Caprara, C. Castellani, Phys. Rev. B 66, 054515 (2002)

    Article  ADS  Google Scholar 

  33. V.Z. Kresin, S.A. Wolf, Physica C 169, 476 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teet Örd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Örd, T., Rägo, K., Vargunin, A. et al. Strong temperature effect on the sizes of the Cooper pairs in a two-band superconductor. Eur. Phys. J. B 91, 2 (2018). https://doi.org/10.1140/epjb/e2017-80477-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80477-8

Keywords

Navigation