Skip to main content

Advertisement

Log in

A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Klauk. Organic electronics II: more materials and applications (Springer-Wiley-VCH Verlag, Weinheim, Germany, 2012)

  2. U. Nandi, D. Jana, D. Talukdar, Prog. Mater. Sci. 71, 1 (2015)

    Article  Google Scholar 

  3. J. Izdebska, in Printing on polymers fundamentals and applications (Elsevier, 2016), pp. 353–370

  4. M. Joshi, U. Chatterjee, in Advanced composite materials for aerospace engineering processing, properties and applications (Elsevier, 2016), pp. 241–264

  5. S.K. Manirul Haque, J.A. Ardila Rey, A.A. Masúd, Y. Umar, R. Albarracin, Electrical properties of different polymeric materials and their applications: the influence of electric field, in Properties and applications of polymer dielectrics, edited by B. Du (IntechOpen, 2017)

  6. N. Lahoud, L. Boudou, J. Martinez-Vega, A multi-dimensional model to describe the ageing process of polymers used for electrical insulation, in Proc. IEEE Int. Conf. Sol. Dielectr., Winchester, UK (2007), pp. 79–81

  7. D. Yin, R. Meng, X. Duan, Y. Li, Physica A 404, 1 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Palit, M. Alam, IEEE Trans. Device Mater. Reliab. 15, 308 (2015)

    Article  Google Scholar 

  9. J. Martinez-Vega, Matériaux diélectriques pour le génie électrique tome 1: propriétés, vieillissement et modélisation. Traité EGEM, série Génie électrique (Lavoisier, 2007)

  10. K. Wu, L.A. Dissado, Appl. Phys. Lett. 85, 514 (2004)

    Google Scholar 

  11. B. Hadri, P.R. Mamy, J.J. Martinez-Vega, M. Mostefa, Solid State Commun. 39, 35 (2006)

    Article  ADS  Google Scholar 

  12. B. Hadri, J. Martinez-Vega, J. Eur. Electr. Eng. 11, 409 (2008)

    Google Scholar 

  13. D. Stauffer, Introduction to percolation theory (Taylor and Francis, e-library, 2010)

  14. A.L. Efros, Physics and geometry of disorder percolation theory (Mir Publishers, Moscow, 1986)

  15. A.A. Saberi, Phys. Rep. 578, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. G.C. Psarras, Appl. Sci. Manuf. 37, 1545 (2006)

    Article  Google Scholar 

  17. V. Ambegaokar, B.I. Halperin, J.S. Langer, Phys. Rev. B 4, 2612 (1971)

    Article  ADS  Google Scholar 

  18. F. Ladieu, M. Sanquer, Ann. Phys. Fr. 21, 267 (1996)

    Article  ADS  Google Scholar 

  19. N. Lahoud, Modélisation du vieillissement des isolants organiques sous contraintes électrique, Application à la fiabilité des matériaux, Ph.D. dissertation, University Paul Sabatier, Toulouse, France, 2009

  20. L.A. Dissado, G. Mazzanti, G.C. Montanari, IEEE Trans. Dielectr. Electr. Insul. 4, 496 (1997)

    Article  Google Scholar 

  21. B.I. Shklovskii, A.L. Efros, Electronic properties of doped semiconductors (Springer, Heidelberg, 1984)

  22. D.I. Aladashvili, Z.A. Adamiya, K.G. Lavadovskii, E. Levin, B.I. Shkloskii, in Hopping and related phenomena (World Scientific, 1990), pp. 283–297

  23. T.M. Behnam, M. Mohsen, M. Ganjeh-Ghazvini, Physica A 460, 304 (2016)

    Article  ADS  Google Scholar 

  24. R. Veysseyre, Aide-mémoire Statistique et probabilités pour l’ingénieur, 2nd edn. (Dunod, Paris, France, 2006)

  25. K. Binder, D.W. Heermann, Monte Carlo simulation in statistical physics: an introduction solid state sciences (Springer, 2002)

  26. V. Gorshkov, V. Privman, S. Libert, Physica A 462, 207 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour El Islam Boukortt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benallou, A., Hadri, B., Martinez-Vega, J. et al. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer. Eur. Phys. J. B 91, 61 (2018). https://doi.org/10.1140/epjb/e2017-80431-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80431-x

Keywords

Navigation