Skip to main content
Log in

Functionalization of (n, 0) CNTs (n = 3–16) by uracil: DFT studies

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations were performed to investigate stabilities and properties for uracil (U)-functionalized carbon nanotubes (CNTs). To this aim, the optimized molecular properties were evaluated for (n, 0) models of CNTs (n = 3–16) in the original and U-functionalized forms. The results indicated that the dipole moments and energy gaps were independent of tubular diameters whereas the binding energies showed that the U-functionalization could be better achieved for n = 8–11 curvatures of (n, 0) CNTs. Further studies based on the evaluated atomic-scale properties, including quadrupole coupling constants (C Q ), indicated that the electronic properties of atoms could detect the effects of diameters variations of (n, 0) CNTs, in which the effects were very much significant for the atoms around the U-functionalization regions. Finally, the achieved results of singular U, original CNTs, and CNT-U hybrids were compared to each other to demonstrate the stabilities and properties for the U-functionalized (n, 0) CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. A.K. Singh, B.N. Kumar, G.C. Sheng, Eur. Phys. J. Appl. Phys. 78, 10101 (2017)

    Article  ADS  Google Scholar 

  3. A. Seif, E. Zahedi, T.S. Ahmadi, Eur. Phys. J. B 82, 147 (2011)

    Article  ADS  Google Scholar 

  4. N.M.B. Cogan, C.J. Bowerman, L.J. Nogaj, B.L. Nilsson, T.D. Krauss, J. Phys. Chem. C 118, 5935 (2014)

    Article  Google Scholar 

  5. A. Reisi-Vanani, M. Hamadanian, S.N. Kokhdan, Comput. Theor. Chem. 1075, 38 (2016)

    Article  Google Scholar 

  6. H. Roohi, S. Khyrkhah, J. Mol. Liq. 211, 498 (2015)

    Article  Google Scholar 

  7. G. Tian, H. Li, W. Ma, Y. Wang, Comput. Theor. Chem. 1062, 44 (2015)

    Article  Google Scholar 

  8. M. Mirzaei, M. Meskinfam, M. Yousefi, Comput. Theor. Chem. 981, 47 (2012)

    Article  Google Scholar 

  9. C. González-Gaitán, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Int. J. Hydrogen Energy 40, 11242 (2015)

    Article  Google Scholar 

  10. D. Silambarasan, K. Iyakutti, V. Vasu, Chem. Phys. Lett. 604, 83 (2014)

    Article  ADS  Google Scholar 

  11. P. Singh, F.M. Toma, J. Kumar, V. Venkatesh, J. Raya, M. Prato, S. Verma, A. Bianco, Chem. Eur. J. 17, 6772 (2011)

    Article  Google Scholar 

  12. Y. Hashida, H. Tanaka, S. Zhou, S. Kawakami, F. Yamashita, T. Murakami, T. Umeyama, H. Imahori, M. Hashida, J. Control. Release 173, 59 (2014)

    Article  Google Scholar 

  13. J. Kim, J. Elsnab, C. Gehrke, J. Li, B.K. Gale, Sens. Actuators B 185, 370 (2013)

    Article  Google Scholar 

  14. P. Singh, J. Kumar, F.M. Toma, J. Raya, M. Prato, B. Fabre, S. Verma, A. Bianco, J. Am. Chem. Soc. 131, 13555 (2009)

    Article  Google Scholar 

  15. H. Liu, G. Wang, J. Hu, D. Chen, W. Zhang, B. Fang, J. Appl. Polym. Sci. 107, 3173 (2008)

    Article  Google Scholar 

  16. M. Mirzaei, M. Yousefi, M. Mirzaei, Mod. Phys. Lett. B 25, 1335 (2011)

    Article  ADS  Google Scholar 

  17. M. Mirzaei, M. Meskinfam, M. Yousefi, Superlattices Microstruct. 52, 158 (2012)

    Article  ADS  Google Scholar 

  18. M. Mirzaei, H.R. Kalhor, N.L. Hadipour, IET Nanobiotechnol. 5, 32 (2011)

    Article  Google Scholar 

  19. A. Bodaghi, M. Mirzaei, A. Seif, M. Giahi, Physica E 41, 209 (2008)

    Article  ADS  Google Scholar 

  20. A. Das, A.K. Sood, P.K. Maiti, M. Das, R. Varadarajan, C.N.R. Rao, Chem. Phys. Lett. 453, 266 (2008)

    Article  ADS  Google Scholar 

  21. J.C. Charlier, S. Roche, Rev. Mod. Phys. 79, 677 (2007)

    Article  ADS  Google Scholar 

  22. M. Yoosefian, M. Zahedi, A. Mola, S. Naserian, Appl. Surf. Sci. 349, 864 (2015)

    Article  Google Scholar 

  23. E.X. Esposito, A.J. Hopfinger, C.Y. Shao, B.H. Su, S.Z. Chen, Y.J. Tseng, Toxicol. Appl. Pharmacol. 288, 52 (2015)

    Article  Google Scholar 

  24. M. Mirzaei, Monatsh. Chem. 140, 1275 (2009)

    Article  Google Scholar 

  25. M. Güney, H. Çavdar, M. Şentürk, D. Ekinci, Bioorg. Med. Chem. Lett. 25, 3261 (2015)

    Article  Google Scholar 

  26. M. Mirzaei, H.R. Kalhor, N.L. Hadipour, J. Mol. Model. 17, 695 (2011)

    Article  Google Scholar 

  27. P. Singh, F.M. Toma, J. Kumar, V. Venkatesh, J. Raya, M. Prato, S. Verma, A. Bianco, Chem. Eur. J. 17, 6772 (2011)

    Article  Google Scholar 

  28. M. Mirzaei, O. Gulseren, Physica E 73, 105 (2015)

    Article  ADS  Google Scholar 

  29. P. Pyykkö, Mol. Phys. 99, 1617 (2001)

    Article  ADS  Google Scholar 

  30. T.P. Das, E.L. Han, Nuclear quadrupole resonance spectroscopy (Academic Press, New York, 1958)

  31. R.S. Drago, Physical methods for chemists, 2nd edn. (Saunders College Publishing, New York, 1992)

  32. Z. Bagheri, M. Mirzaei, N.L. Hadipour, M.R. Abolhassani, J. Comput. Theor. Nanosci. 5, 614 (2008)

    Article  Google Scholar 

  33. M. Mirzaei, N.L. Hadipour, M.R. Abolhassani, Z. Naturforsch. A 62, 56 (2007)

    Article  ADS  Google Scholar 

  34. H. Behzadi, N.L. Hadipour, M. Mirzaei, Biophys. Chem. 125, 179 (2007)

    Article  Google Scholar 

  35. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman et al., Gaussian 09, Revision A.01 (Gaussian Inc., Wallingford, CT, 2009)

  36. L. Turi, J.J. Dannenberg, J. Phys. Chem. 97, 2488 (1993)

    Article  Google Scholar 

  37. M. Mirzaei, F. Elmi, N.L. Hadipour, J. Phys. Chem. B 110, 10991 (2006)

    Article  Google Scholar 

  38. S. Grimme, WIREs 1, 211 (2011)

    Google Scholar 

  39. S. Gowtham, R.H. Scheicher, R. Pandey, S.P. Karna, R. Ahuja, Nanotechnology 19, 125701 (2008)

    Article  ADS  Google Scholar 

  40. F. Karchemski, D. Zucker, Y. Barenholz, O. Regev, J. Control. Release 160, 339 (2012)

    Article  Google Scholar 

  41. M. Mirzaei, N.L. Hadipour, Physica E 40, 800 (2008)

    Article  ADS  Google Scholar 

  42. T. Partovi, M. Mirzaei, N.L. Hadipour, Z. Naturforsch. A 61, 383 (2006)

    Article  ADS  Google Scholar 

  43. M. Mirzaei, R.S. Ahangari, Superlattices Microstruct. 65, 375 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Mirzaei.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2017-80404-1 .

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, M., Harismah, K., Jafari, E. et al. Functionalization of (n, 0) CNTs (n = 3–16) by uracil: DFT studies. Eur. Phys. J. B 91, 14 (2018). https://doi.org/10.1140/epjb/e2017-80404-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80404-1

Keywords

Navigation