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Abstract. Based on the results of the diffusion entropy analysis of Super-Kamiokande solar neutrino data,
a generalized entropy, introduced earlier by the first author is optimized under various conditions and it is
shown that Maxwell–Boltzmann distribution, Raleigh distribution and other distributions can be obtained
through such optimization procedures. Some properties of the entropy measure are examined and then
Maxwell–Boltzmann and Raleigh densities are extended to multivariate cases. Connections to geometri-
cal probability problems, isotropic random points, and spherically symmetric and elliptically contoured
statistical distributions are pointed out.

1 Introduction

Historically, the notion of entropy emerged in conceptually
distinct contexts. This paper deals with the connection
between entropy, probability, and fractional dynamics as
they appeared in solar neutrino astrophysics since the
1970s [1–4].

Boltzmann’s derivation of the second law of thermody-
namics was based on mechanics arguments. In his paper
of 1872, Boltzmann considered the dynamics of binary
collisions and stated that “One has therefore rigorously
proved that, whatever the distribution of the kinetic
energy at the initial time might have been, it will, after a
very long time, always necessarily approach that found
by Maxwell” [5]. Boltzmann’s Stosszahlansatz, i.e. the
assumption of molecular chaos used in his equation, was
a statistical assumption which had no dynamical basis.
His equally famous relation between entropy and proba-
bility, S ∼ logW , in his paper “On the relation between
the second law of the mechanical theory of heat and
probability theory with respect to the laws of thermal
equilibrium” [6,7] was not based on dynamics. At that
time Boltzmann’s Stosszahlansatz was heavily criticized
by Loschmidt’s reversibility paradox [6,7] and Zermelo’s
recurrence paradox [8–10].

In the remarkable year 1900 for physics, Planck elabo-
rated on the connection between entropy and probability
based on the universality of the second law of thermo-
dynamics and the established laws of probability and
put in writing the final form of the relation between
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entropy S and permutability P ∼W in its definitive form
S = k logW . He called k Boltzmann’s constant and came
to the conclusion that in every finite region of phase
space the thermodynamic probability has a finite mag-
nitude limited by h, representing Planck’s constant. At
this point Planck introduced his quantum hypothesis [11].
Concerning Planck’s hypothesis of light quanta he strictly
preserved Maxwell’s theory in vacuum and applied the
quantum hypothesis only to matter that interacts with
radiation [12].

In 1911 at the first Solvay Conference, Einstein liter-
ally put it as a requirement that one needs a fundamental
theory of dynamics to make sense of Boltzmann’s con-
nection between entropy and probability, even in the case
of Planck’s use of Boltzmann’s formula in the process of
discovery of the quantum of action. Einstein’s immediate
reaction to Planck’s extensive report at the first Solvay
Congress was [13]:

“What I find strange about the way Mr. Planck applies
Boltzmann’s equation is that he introduces a state proba-
bility W without giving this quantity a physical definition.
If one proceeds in such a way, then, to begin with, Boltz-
mann’s equation does not have a physical meaning. The
circumstance that W is equated to the number of com-
plexions belonging to a state does not change anything
here; for there is no indication of what is supposed to
be meant by the statement that two complexions are
equally probable. Even if it were possible to define the
complexions in such a manner that the S obtained from
Boltzmann’s equation agrees with experience, it seems to
me that with this conception of Boltzmann’s principle it
is not possible to draw any conclusions about the admissi-
bility of any fundamental theory whatsoever on the basis
of the empirically known thermodynamic properties of a
system.”
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Recently, Brush and Segal [14] commented on the
above Boltzmann–Planck–Einstein dispute from a histor-
ical point of view on how the interaction of theory and
experiment in physics with available applicable math-
ematics and statistics lead to established theories and
subsequently to predictions and explanations of natural
phenomena. He perceives Planck’s derivation of an equa-
tion for black-body radiation that this equation, when
explored with Boltzmann’s formula for entropy, implied
that radiation is composed of particles. Planck, as a strong
supporter of the wave theory of electromagnetic radiation,
could not believe what the mathematics was telling him.
Similarly, Kuhn [15] pointed out that Planck did not pro-
pose a physical quantum theory but he used quantization
only as a convenient method of approximation.

Following the above reasoning of Boltzmann, Planck,
and Einstein, in this paper we utilize the statistical
methodology developed by Scafetta [16] by evaluating
the scaling exponent of the probability density func-
tion through Boltzmann’s entropy of a kind of diffusion
process generated by complex fluctuations in the measure-
ments of the solar neutrino flux in the Super-Kamiokande
experiment [17–20]. This method does focus on the scal-
ing properties of the Super-Kamiokande time series (see
Fig. 1) generated by a supposedly unknown complex
dynamical phenomenon. By summing the terms of such
a time series one gets a trajectory and this trajectory can
be used to generate a diffusion process. The method is
thus based upon the evaluation of the Boltzmann entropy
of the probability density function of a diffusion process.
The numerical result of diffusion entropy analysis of the
solar neutrino data from Super-Kamiokande is shown in
Figure 2.

In principle, one can perceive the graphical result in
Figure 2 of the diffusion entropy analysis of solar neutrino
radiation similar to Planck’s analysis of black body radi-
ation. What physical meaning this carries remains to be
seen. Assuming that the solar neutrino signal is governed
by a probability density function (pdf) with scaling given
by the asymptotic time evolution of a pdf, obeying the
property:

p(x, t) =
1

tδ
F
( x
tδ

)
,

where δ denotes the scaling exponent of the pdf.
The quantum mechanics of neutrino flavour oscillations

can be analyzed in a variety of ways in physics. There are
treatments of this oscillation phenomenon based on plane
waves, on wave packets, and on quantum field theory.
These treatments have yielded the standard expression
for the probability of oscillations. Neutrinos have been
detected in three distinct flavours which interact in partic-
ular ways with electrons, muons, and tau leptons, respec-
tively. Flavour oscillations occur because the flavour states
are distinct from the neutrino mass states. In particular,
a given flavour state may be represented as a coherent
superposition of different mass states. In a recent MINOS
experiment it was discovered that the phenomenon of
neutrino oscillations violates the Leggett–Garg inequality,
an analogue of Bell’s inequality, involving correlations of

Fig. 1. Super-Kamiokande I, II, III, and IV solar neutrino
data, http://vietnam.in2p3.fr/2017/neutrinos/program.php.

measurements on neutrino oscillations at different times
[21]. The MINOS experiment analysis did show a viola-
tion of the classical limits imposed by the Leggett–Garg
inequality. This provided evidence for the existence of the
quantum effect of entanglement between the mass eigen-
states which make up a flavour state. The entropy of
entanglement [22] is an entanglement measure for a many-
body quantum state and the question arises if the results
shown in Figure 2 may find an interpretation in terms of
the evolution of an entanglement entropy over time.

Back to Figure 2, it shows a phenomenon that fol-
lows certain scaling laws. This Diffusion Entropy Analysis
(DEA) measures the correlated variations in the Super-
Kamiokande solar neutrino time series. The analysis is
based on the diffusion process generated by the time series
and measures the time evolution of the Boltzmann entropy
of the probability density function of this diffusion process.
As in Brownian motion trajectories the value of a time
series is interpreted as the steps of a diffusion process. The
trajectories of this process are defined by the cumulative
sum of these steps and obtain a different trajectory for
each value of the time series over the full period of time of
measurements. Subsequently the probability density func-
tion p(x, t) is evaluated that describes the probability that
a given trajectory has a displacement of x after t steps. For
every particular t the temporal Boltzmann entropy of the
probability density function p(x, t) at time t is evaluated
by S(t) = δ log t, where δ is the diffusion exponent. For
a random uncorrelated diffusion process with finite vari-
ance, the p(x, t) will converge according to the Central
Limit Theorem to a Gaussian pdf which exhibits δ = 1/2.
Figure 2 shows that all δ’s are different from the value
δ = 1/2. These diffusion exponents are non-Gaussian and
exhibit diffusive fluctuations that cannot be modeled by
random Gaussian diffusion processes.

To evaluate the Boltzmann entropy of the diffusion
process at time t, [16] defined S(t) as:

S(t) = −
∫ +∞

−∞
dx p(x, t) ln p(x, t),

https://epjb.epj.org/
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Fig. 2. Diffusion Entropy Analysis (DEA) and Standard Deviation Analysis (SDA) of the Super-Kamiokande I and II solar
neutrino data [20].

and with the previous p(x, t), one has:

S(t) = A+ δ ln(t), A = −
∫ +∞

−∞
dyF (y) lnF (y).

The scaling exponent, δ, is the slope of the entropy against
the logarithmic time scale. The slope is visible in Figure 2
for the Super-Kamiokande data measured for 8B and hep.
The Hurst exponents of the Standard Deviation Analysis
(SDA) of the same time series are H = 0.66 and H = 0.36
for 8B and hep, respectively, shown in Figure 2. The pdf
scaling exponents for DEA are δ = 0.88 and δ = 0.80 for
8B and hep, respectively. The values for both SDA and
DEA indicate a deviation from Gaussian behavior, which
would require that H = δ = 1/2.

Based on the discussion above in the following we
consider the entropy measure

Mα(f) =

∫
x
[f(x)]1+

δ−α
η dx− 1

α− δ
, α 6= δ, η > 0, α < η + δ,

(1)

where δ is a real number or anchoring point, α is a vary-
ing parameter, η > 0 is the measuring unit of the distance
δ − α, x is a real scalar or vector or matrix variable. We
will use small x to denote a scalar variable and capital
X to denote a vector or matrix variable. The dX stands
for the wedge product of differentials. The f(x) is a real-
valued scalar function of x such that f(x) ≥ 0 for all
x and

∫
x
f(x)dx = 1 or f(x) is a statistical density. If

X is a p × 1 vector with X ′ = (x1, . . . , xp) denoting its
transpose, then dX = dx1 ∧ . . . ∧ dxp. If X = (xij) is a
m × n matrix with distinct real scalar variable elements
xij ’s then dX = ∧mi=1 ∧nj=1 dxij . Here δ is an anchor-
ing point, any real number including zero. When α → δ

then 1 + δ−α
η → 1 and

∫
x
[f(x)]1+

δ−α
η dx − 1 → 0. Also

α− δ → 0. Hence

lim
α→δ

Mα(f) = lim
α→δ

{∫
x
[f(x)]1+

δ−α
η dx− 1

α− δ

}

= −1

η

∫
x

f(x) ln f(x)dx,

https://epjb.epj.org/
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which is Boltzmann’s measure of entropy when x is a real
scalar variable. Hence (1) is a generalization of Shannon’s
entropy measure in the real scalar variable case as well as
extended to vector and matrix-variate cases. Observe that∫

x

[f(x)]1+
δ−α
η dx =

∫
x

[f(x)]
δ−α
η f(x)dx = E[f(x)]

δ−α
η ,

where E denotes statistical expectation. When α = δ this
expected value is E(1) = 1. Here δ is a fixed point on the
real line and the entropy is anchored at the point x = δ
when x is a scalar variable. When α = δ, Mα(f) goes to
Boltzmann’s entropy and hence Mα(f) can be taken as
a measure of departure from Boltzmann’s entropy, depar-
ture measured in terms of δ−α

η units. If α = δ gives a

stable stage in a physical situation then when α moves
away from δ then Mα(f) will measure the entropy in the
neighborhood of the stable stage. Later it will be shown
that α can describe a pathway for the movement from a
stable situation to the unstable neighborhoods.

We will start with our discussion when x is a real
scalar variable. First we will optimize (1) and obtain the
Maxwell–Boltzmann density.

1.1 Entropy optimization for the Maxwell–Boltzmann
density

One form of the Maxwell–Boltzmann velocity density is
the following:

f(v) =

{
4√
π
β

3
2 v2e−βv

2

, 0 ≤ v <∞, β = m
2kT

0, elsewhere.
. (2)

Note that f(v) ≥ 0 for all v and
∫∞
0
f(v)dv = 1. It is a

statistical density. Consider an arbitrary density for a real
scalar positive variable x, denoted by f(x), and consider
the following moments for the real scalar positive variable
x:

µ1 = E[x2(
δ−α
η )] =

∫ ∞
0

x2(
δ−α
η )f(x)dx, η > 0, (3)

and

µ2 = E[x2(
δ−α
η )+2] =

∫ ∞
0

x2(
δ−α
η )+2f(x)dx, η > 0. (4)

Observe that when α = δ, (3) says E(1) = 1 with respect
to any density f(x), and (4) says about the second
moment of the arbitrary density f(x). Let us assume that
µ1 and µ2 are fixed or given in the class of all densities
f(x) or in the set of all real-valued scalar functions f(x)
such that f(x) ≥ 0 for all x and

∫
x
f(x)dx = 1. Let us

optimize the entropy in (1) under the constraints that µ1

and µ2 are given for fixed δ, α, η with η > 0. If we use cal-
culus of variation to optimize (1) then the Euler equation
is the following:

(i)
∂

∂f
{f1+

δ−α
η −λ1x2(

δ−α
η )f +λ2x

2( δ−αη )+2f} = 0, (5)

where λ1 and λ2 are Lagrangian multipliers. Then (5)
gives

(ii)

(
1 +

δ − α
η

)
f
δ−α
η − λ1x2(

δ−α
η ) + λ2x

2( δ−αη )+2 = 0.

(6)
That is,

(iii) f =

[
1

1 + δ−α
η

] η
δ−α

x2
[
1− λ2

λ1
x2
] η
δ−α

. (7)

By taking λ2

λ1
= a(δ − α), α < δ, a > 0 and c1 =[

1
1+ δ−α

η

] η
δ−α

we have

f1(x) = c1x
2[1− a(δ − α)x2]

η
δ−α , a > 0, α < δ, (8)

where 1 − a(δ − α)x2 > 0, c1 can act as the normalizing
constant when f1(x) is a statistical density, and f1(x) = 0
elsewhere. If α > δ then write δ − α = −(α − δ), α > δ
and then (8) is transformed to

f2(x) = c2x
2[1 + a(α− δ)x2]−

η
α−δ ,

α > δ, η > 0, a > 0, x ≥ 0, (9)

and zero elsewhere, where c2 can act as the normalizing
constant. Observe that c2 is different from c1, and in fact
that the two functions f1(x) and f2(x) are structurally dif-
ferent, one belonging to the generalized type-1 beta family
of densities and the other belonging to the generalized
type-2 beta family of densities, where the support of f1(x)

is finite 0 ≤ x ≤ [a(δ − α)]−
1
2 , and f2(x) has the support

0 ≤ x <∞. When α→ δ then both f1(x) and f2(x) go to

f3(x) = c3x
2e−aηx

2

, η > 0, a > 0, x ≥ 0, (10)

and zero elsewhere, where c3 is the normalizing constant.
Note that (10) is a form of the Maxwell–Boltzmann veloc-
ity density. Observe that from (8) one can go to (9) and
(10). Also one can go from (9) to (8) and (10). Hence (8) or
(9) is called a pathway version of the Maxwell–Boltzmann
density, where δ is a fixed point such as δ = 1 and α is
the pathway parameter and the departure from the point
x = δ is measured in terms of η units, η > 0. If we want
to incorporate the parameters in the Maxwell–Boltzmann
density then we may take aη = m

2kT or a = m
η2kT . Then

(8)–(10) reduce to the following:

f∗1 (x) = c∗1x
2

[
1− (δ − α)

(
m

η2kT

)
x2
] η
δ−α

, α < δ, η > 0,

(11)

1− (δ − α)

(
m

η2kT

)
x2 > 0,

https://epjb.epj.org/
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f∗2 (x) = c∗2x
2

[
1 + (α− δ)

(
m

η2kT

)
x2
]− η

α−δ

,

α > δ, x ≥ 0, (12)

f∗3 (x) = c∗3x
2e−

m
2kT x

2

, x ≥ 0. (13)

We can evaluate c∗1 by using a type-1 beta integral, c∗2
by using a type-2 beta integral and c∗3 by using a gamma
integral. The results are the following:

c∗1 =
4Γ ( η

δ−α + 5
2 )(δ − α)

3
2 ( m
η2kT )

3
2

√
πΓ ( η

δ−α + 1)
, α < δ, η > 0, (14)

c∗2 =
4√
π

Γ ( η
α−δ )(α− δ) 3

2 ( m
η2kT )

3
3

Γ ( η
α−δ −

3
2 )

,

α > δ,
η

α− δ
− 3

2
> 0, (15)

c∗3 =
4√
π

(
m

η2kT

) 3
2

. (16)

We will call (11) and (12) as the pathway generalized
Maxwell–Boltzmann density.

2 Raleigh density and optimization of the
generalized entropy

One form of Raleigh density is the following:

g(x) =
1

γ2
xe
− x2

2γ2 , 0 ≤ x <∞, γ > 0, (17)

and zero elsewhere. If (17) is to be obtained from the
generalized entropy (1) then consider the following con-
straints:

ν1 = E[x
δ−α
η ] =

∫ ∞
0

x
δ−α
η g(x)dx, η > 0, (18)

and

ν2 = E[x
δ−α
η +2] =

∫ ∞
0

x
δ−α
η +2g(x)dx, η > 0. (19)

Assuming that ν1 and ν2 are fixed for an arbitrary density
g(x), for fixed α, δ, η and proceeding as in Section 1.1 we
have the following densities corresponding to f1, f2, f3 in
Section 1.1:

g1(x) = d1 x[1− a(δ − α)x2]
η

δ−α , a > 0, α < δ, η > 0,
(20)

1− (δ − α)x2 > 0,

g2(x) = d2 x[1 + a(α− δ)x2]−
η

α−δ , a > 0,

α > δ, η > 0, x ≥ 0 (21)

g3(x) = d3 xe−aηx
2

, a > 0, η > 0, x ≥ 0, (22)

where g1, g2, g3 are zero outside the support indicated
above, and d1, d2, d3 are the respective normalizing con-
stants. Comparing (22) with the Raleigh density in (17)
we may take aη = 1

2γ2 or a = 1
η2γ2 . Then g1, g2 transform

to the following:

g∗1(x) = d∗1 x

[
1− (δ − α)

(
1

η2γ2

)
x2
] η
δ−α

,

α < δ, η > 0, (23)

1− (δ − α)

(
1

η2γ2

)
x2 > 0,

g∗2(x) = d∗2 x

[
1 + (α− δ)

(
1

η2γ2

)
x2
]− η

α−δ

,

α > δ, η > 0, x ≥ 0, (24)

where the normalizing constants d∗1 and d∗2 can be eval-
uated by using a type-1 beta integral and a type-2 beta
integral, respectively. Then the resulting densities are the
following:

g∗1(x) =
η + δ − α
ηγ2

x

[
1− (δ − α)

2ηγ2
x2
] η
δ−α

, α < δ, η > 0,

(25)

g∗2(x) =
η + δ − α
ηγ2

x

[
1 +

(α− δ)
2ηγ2

x2
]− eta

α−δ

,

α > δ, η > 0, x ≥ 0, (26)

η + δ − α > 0,

g∗3(x) =
1

γ2
xe
− x2

2γ2 , x ≥ 0, γ > 0. (27)

If we take the anchoring point δ = 1 and the parame-
ter η = 1 then the normalizing constants d∗1 = d∗2 = 2−α

γ2 .

Then for α < 1 one has type-1 beta case in (25), for α > 1
one has the type-2 beta case in (26) and for α → 1 one
has the gamma case in (27).

3 Some general observations

Consider the generalized entropy in (1). This can be
written as

Mα(f) =

∫
x
[f(x)]1+

δ−α
η dx− 1

α− δ

=

∫
x
[f(x)]1+

δ−α
η dx−

∫
x
f(x)dx

α− δ

=

∫
x

f(x)
[f(x)

δ−α
η − 1]

α− δ
dx

= E

[
f
δ−α
η − 1

α− δ

]
, (28)

where E denotes the expected value. When α = δ we have

f
δ−α
η = 1. Thus, depending upon the departure of α from

https://epjb.epj.org/
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the fixed anchoring point x = δ we have a very small or

larger departure from 1 in f
δ−α
η . Also

lim
α→δ

f
δ−α
η − 1

α− δ
= lim
α→δ

e
δ−α
η ln f − 1

α− δ

=
limα→δ

∂
∂α [e

δ−α
η ln f − 1]

limα→δ
∂
∂α [α− δ]

= −1

η
ln f. (29)

That is,

lim
α→δ

Mα(f) = −1

η
E[ln f ] = −1

η

∫
x

f(x) ln f(x)dx = S,

where S denotes Boltzmann’s entropy. Hence

S = −1

η
E[ln f ] = E

[
−1

η
ln f

]
= lim
α→δ

Mα(f).

Hence, what is done in Mα(f) is to approximate − 1
η ln f

by f
δ−α
η −1
α−δ , where δ is a fixed anchoring point, η is fixed

and positive and α can vary, where α < δ, α > δ, α → δ.
Consider a simple example. Let x = energy generated in a
physical system. Then the physical law of conservation of
energy can be stated as an expected value E in statistical
terms, that is, E(x) is fixed in the density f(x) of x. That
is,

E(x) =

∫ ∞
0

xf(x)dx = fixed.

For example, if f(x) is the exponential density, f(x) =
ce−cx, c > 0, x ≥ 0 then E(x) = 1

c . Instead of E(x) =
fixed, let us consider a slight disturbance and consider
the following constraints:

E[x
δ−α
η ] = fixed and E[x

δ−α
η +1] = fixed. (30)

When α→ δ then the two restrictions above are E(1) = 1
and E(x) is fixed or the law of conservation of energy.
Hence in (30) we consider only a slight disturbance to
the law of conservation of energy. Let us consider an arbi-
trary density f(x) and let us optimize Mα(f) of (1) under
the constraints in (30). Then proceeding as in the deriva-
tion from (17) to (22) we see that the Euler equation, if
we use calculus of variations for the optimization, as the
following:

∂

∂f
{f1+

δ−α
η − λ1x

δ−α
η f + λ2x

1+ δ−α
η f} = 0, (31)

where λ1 and λ2 are the Lagrangian multipliers. Then (31)
gives

f1(x) = c1 x[1− a(δ − α)x]
η

δ−α , α < δ, η > 0, (32)

for 1 − a(δ − α)x > 0, a > 0 and zero elsewhere, where
λ2

λ1
is taken as a(δ − α), a > 0 and c1 can act as the

normalizing constant. For α > δ, (32) changes to the
following:

f2(x) = c2 x[1 + a(α− δ)x]−
η

α−δ , α > δ, a > 0, x ≥ 0,
(33)

and zero elsewhere. When α → δ, both (32) and (33) go
to

f3(x) = c3 xe−aηx, a > 0, η > 0, x ≥ 0, (34)

and zero elsewhere. This is Maxwell–Boltzmann’s energy
density. Note that (32)–(34) give the pathway form of the
Maxwell–Boltzmann density which is available by optimiz-

ing E[ f
δ−α
η −1
α−δ ] which is an approximation to E[− 1

η ln f ],

under the constraints E[x
δ−α
η ] is fixed and E[x1+

δ−α
η ] is

fixed, which correspond to a slight disturbance from the
law of conservation of energy. Note that if in (34), aη = 1

kT
where k is Boltzmann’s constant and T is the temperature,
then the densities in (32)–(34) change to the following:

f11(x) = c1 x

[
1− 1

kT

(
δ − α
η

)
x

] η
δ−α

, α < δ, η > 0,

(35)

0 ≤ x ≤ ηkT

δ − α
,

f21(x) = c2 x

[
1 +

1

kT

(
α− δ
η

)
x

]− η
α−δ

,

α > δ, η > 0, x ≥ 0, (36)

f31(x) = c3 xe−
x
kT , x ≥ 0. (37)

Note that if a in (32)–(34) is taken as 1 then η = 1
kT . Then

the densities in (35)–(37) change to the following:

f12(x) = c1 x[1− (δ − α)x]
1

kT (δ−α) ,

α < δ, 1− (δ − α)x > 0, (38)

f22(x) = c2 x[1 + (α− δ)x]−
1

kT (α−δ) , α > δ, x ≥ 0, (39)

f32(x) = c3 xe−
x
kT , x ≥ 0. (40)

In this case the restrictions can be stated as the following:

E[xkT (δ−α)] = fixed and E[xkT (δ−α)+1] = fixed, α < δ.

These are only slight deviations from E(1) = 1 and
E(x) = fixed. As before, the normalizing constants can
be evaluated with the help of type-1 beta, type-2 beta,
and gamma integrals and they are the following:

c1 =
(δ − α)2Γ ( 1

kT (δ−α) + 3)

Γ ( 1
kT (δ−α) + 1)

, α < δ, (41)
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c2 =
(α− δ)2Γ ( 1

kT (α−δ) )

Γ ( 1
kT (α−δ) − 2)

, α > δ,
1

kT (α− δ)
− 2 > 0,

(42)

c3 =
1

(kT )2
. (43)

3.1 Differential pathway

Consider the differential equation for (38). Denoting
d
dxf12(x) = f ′12(x) we have the following:

f ′12(x) = f12(x)

[
1

x
− 1

kT [1− (δ − α)x]

]
, α < δ. (44)

Similar differential equations corresponding to (42) and
(43) can be derived. This will provide a differential
pathway.

If Boltzmann’s entropy is optimized subject to the
constraint that the first moment is fixed then we auto-
matically arrive at (28) or (40).

3.2 Evaluation of δ −α for α < δ

From (38) or (41) the first moment E(x) is the following:

E(x) =
2

δ − α

[
1

1
kT (δ−α) + 3

]
⇒ (δ − α)

=
2kT − E(x)

3kTE(x)
, α < δ. (45)

But, through the constraint, E(x) is fixed. Then (δ − α)
is evaluated in terms of E(x). Note that in the stable
situation α→ δ we have E(x) = kT . For α > δ,

α− δ =
E(x)− 2kT

3kTE(x)
. (46)

4 Generalized energy density

If Mα(f) of (1) is optimized under the conditions

E[xγ(
δ−α
η )] = fixed and E[xγ(

δ−α
η )+ρ] = fixed (47)

for some γ > 0, ρ > 0, then proceeding as in (31)–(34) one
gets the following models:

g1(x) = ĉ1x
γ

[
1− a (δ − α)

η
xρ
] η
δ−α

,

α < δ, a > 0, ρ > 0, γ > 0, (48)

0 ≤ x ≤
[

η

a(δ − α)

] 1
ρ

,

g2(x) = ĉ2x
γ

[
1 + a

(α− δ)
η

xρ
]− η

α−δ

,

α > δ, a > 0, ρ > 0, γ > 0, x ≥ 0, (49)

g3(x) = ĉ3x
γe−ax

ρ

, a > 0, ρ > 0, x ≥ 0. (50)

The models in (48) or (49) is the pathway model of [23] for
the real scalar positive variable case. For γ = ρ−1 one has
the power transformed version of the energy densities in
(32)–(34). If γ = 1, ρ = 2 then we have extended Raleigh
density in (47) and (48) and when α→ δ it is the Raleigh
density. If γ = 2, ρ = 2 then we have extended Maxwell–
Boltzmann density in (47) and (48), and when α→ δ it is
the Maxwell–Boltzmann density.

5 Multicomponent energy generation

Consider the matrix X =

x1...
xp

. Let the total energy

produced by X be a norm of X, say ‖X‖. Taking the

Euclidean norm ‖X‖ = (x21 + · · ·+ x2p)
1
2 , where x1, . . . , xp

are the real components of X, we can look at the density of
u = ‖X‖2 = x21 + · · ·+ x2p. Let dX = dx1 ∧ . . . ∧ dxp the
wedge product of the differentials dxj ’s. Then Mathai’s
entropy (1) in this case is the following:

Mα(f) =

∫
X

[f(X)]1+
δ−α
η dX − 1

α− δ
, α 6= δ, η > 0,

dX = dx1 ∧ . . . ∧ dxp, (51)

and f is a density, that is f(X) ≥ 0 for all X and∫
X
f(X)dX = 1. Let us optimize (1) under the conditions

E[uγ
(δ−α)
η ] = fixed and E[uγ

(δ−α)
η +ρ] = fixed. (52)

Observe that when α = δ the first condition is E(1) = 1
and the second condition is that the ρth moment is fixed.
Going through the steps as in earlier sections the density
f(X) is the following for the three cases α < δ, α > δ, α→
δ, denoted by g1(X), g2(X), g3(X), respectively:

g1(X) = C1u
γ

[
1− a

(
δ − α
η

)
uρ
] η
δ−α

,

α < δ, a > 0, η > 0, ρ > 0, γ > 0

= C1(x21 + · · ·+ x2p)
γ

[
1− a

(
δ − α
η

)
×(x21 + · · ·+ x2p)

ρ

] η
δ−α

, α < δ, (53)

0 ≤ ‖X‖ ≤
[

η

a(δ − α)

] 1
ρ

,

g2(X) = C2(x21 + · · ·+ x2p)
γ

[
1 + a

(
α− δ
η

)
×(x21 + · · ·+ x2p)

ρ

]− η
α−δ

,

α > δ, η > 0, a > 0, ‖X‖ ≥ 0, (54)
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g3(X) = C3(x21 + · · ·+ x2p)
γe−aη(x

2
1+···+x

2
p)
ρ

,

a > 0, η > 0, ‖X‖ ≥ 0, (55)

where C1, C2, C3 are the normalizing constants. The densi-
ties in (53)–(55) are also connected with isotropic random
points, type-1 beta, type-2 beta and gamma distributed,
in geometrical probability problems, see for example [24].
Observe that ‖X‖2 is invariant under orthonormal trans-
formations on X. That is, if Y = QX with QQ′ =
I,Q′Q = I where a prime denotes the transpose and I
is the identity matrix, then

Y ′Y = X ′X = ‖X‖2 = ‖Y ‖2 = y21 + · · ·+ y2p.

In statistical problems, the components of X, namely
xj ’s, may be correlated and one may want to make the
components noncorrelated. Then we consider the trans-
formation Y = V −

1
2X where the p × p matrix V > O

(positive definite) is the covariance matrix and V
1
2 denotes

the positive definite square root to V . In this case the
norm ‖V − 1

2X‖ = X ′V −1X = ‖Y ‖2, or it is a positive
definite quadratic form of the type X ′AX,A = A′ > O
where A = V −1 in the correlated case. Observe that
X ′AX = c > 0 is an ellipsoid in the p-space. In this
situation, if we consider an orthonormal transformation
X = Q′Y,QQ′ = I,Q′Q = I then

X ′AX = Y ′QAQ′Y = Y ′DY = λ1y
2
1 + · · ·+ λpy

2
p, (56)

where λj > 0, j = 1, . . . , p are the eigenvalues of A > O.
Then, instead of the spherically symmetric densities in
(53)–(55) we end up with the elliptically contoured den-
sities. If Mathai’s entropy Mα(f) is optimized under the

conditions E[vγ(
δ−α
η )] is fixed and E[vγ(

δ−α
η )+ρ] is fixed,

where v = X ′AX then we have the following densities:

g4(X) = C4(X ′AX)γ
[
1− a

(
δ − α
η

)
(X ′AX)ρ

] η
δ−α

,

α < δ, (57)

η > 0, a > 0, γ > 0, ρ > 0, 0 ≤ X ′AX ≤
[

η

a(δ − α)

] 1
ρ

,

g5(X) = C5(X ′AX)γ
[
1 + a

(
α− δ
η

)
(X ′AX)ρ

]− η
α−δ

,

α > δ, (58)

a > 0, γ > 0, ρ > 0, X ′AX > 0,

g6(X) = C6(X ′AX)γe−a(X
′AX)ρ , a > 0, X ′AX ≥ 0,

(59)

where C4, C5, C6 are the normalizing constants. Let us
evaluate the normalizing constant C1 in (57). This proce-
dure will also hold for the evaluation of C5 and C6. From
(57) the total probability is 1. Hence 1 =

∫
X
g4(X)dX.

Consider the transformation A
1
2X = Y then dX =

|A|−
p+1
2 dY , see [25] where |(·)| denotes the determinant

of (·). Then

1 = C4|A|−
p+1
2

∫
Y

(Y ′Y )γ
[
1− a

(
δ − α
η

)
(Y ′Y )ρ

] η
δ−α

dY.

Put Y ′Y = s = r2. Then

dY =
π
p
2

Γ (p2 )
s
p
2−1ds = 2

π
p
2

Γ (p2 )
rp−1dr,

see [25]. Then

1 = C4|A|−
p+1
2

∫ ∞
r=0

r2γ
[
1− a

(
δ − α
η

)
r2ρ
] η
δ−α

× 2π
p
2

Γ (p2 )
rp−1dr, α < δ.

Put

z = a

(
δ − α
η

)
r2ρ ⇒ r = z

1
2ρ

[
η

a(δ − α)

] 1
2ρ

,

and

dr =
1

2ρ

[
η

a(δ − α)

] 1
2ρ

z
1
2ρ−1dz,

r2γ+p−1dr =
z
γ
ρ+

p
2ρ−1

2ρ

[
η

a(δ − α)

] γ
ρ+

p
2ρ

.

Integration over r gives

Γ (γρ + p
2ρ )Γ ( η

δ−α + 1)

Γ ( η
δ−α + 1 + γ

ρ + p
2ρ )

.

Therefore

C4 =
|A|

p+1
2 Γ (p2 )Γ ( η

δ−α + 1 + γ
ρ + p

2ρ )

ρπ
p
2 Γ (γρ + p

2ρ )Γ ( η
δ−α + 1)

×
[
a(δ − α)

η

] γ
ρ+

p
2ρ

, α < δ. (60)

For α > δ, follow through the same steps as above and
then evaluate the integral by using a type-2 beta integral,
then one has the following:

C5 =
|A|

p+1
2 Γ (p2 )Γ ( η

α−δ )

ρπ
p
2 Γ (γρ + p

2ρ )

[a (α−δ)
η ]

γ
ρ+

p
2ρ

Γ ( η
α−δ −

γ
ρ −

p
2ρ )

, (61)
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for α > δ, η
α−δ −

γ
ρ −

p
2ρ > 0 and

C6 =
|A|

p+1
2 Γ (p2 )(a)

γ
ρ+

p
2ρ

ρπ
p
2 Γ (γρ + p

2ρ )
, a > 0, γ > 0, ρ > 0. (62)

In all the above cases, A > O, γ > 0, ρ > 0, a > 0, η > 0.
Note that the energy density is the case for γ = 1, p = 1.
Recently, [26] constructed matrix-variate analogues of the
Maxwell–Boltzmann and Raleigh densities.

6 Concluding remarks

In this paper we are going back to the roots of the orig-
inal solar neutrino problem. This problem was solved
through the discovery of neutrino oscillations and was
recently enriched by the experimental and theoretical
consideration of neutrino entanglement. To reconsider
possible new properties of solar neutrinos we performed
diffusion entropy analysis (DEA), utilizing Boltzmann
entropy, and standard deviation analysis (SDA) with
Super-Kamiokande solar neutrino data. Surprisingly this
analysis revealed a non-Gaussian signal with harmonic
behavior. The Hurst exponent is different from the scal-
ing exponent of the probability density function and
both Hurst exponent and scaling exponent of the Super-
Kamiokande data deviate considerably from the value of
1/2 which indicates that the statistics of the underly-
ing phenomenon is anomalous. We recapitulate arguments
from the so-called Boltzmann–Planck–Einstein discus-
sions related to Planck’s discovery of the black-body
radiation law and emphasize from this discussion that
a meaningful implementation of the complex entropy-
probability-dynamics may offer two ways for explaining
the results of DEA and SDA [20]. One way is to con-
sider an anomalous diffusion process that needs to use
the fractional space-time diffusion equation and the other
way to generalize Boltzmann’s entropy by assuming a
power law probability density function. We consider in
this paper the second way and postulate a generalized
Boltzmann entropy called Mathai entropy. This entropy
contains a varying parameter that is used to construct an
entropic pathway covering generalized type-1 beta, type-2
beta, and gamma families of densities. Similarly path-
ways for respective distributions and differential equations
can be developed. Mathai’s entropy is optimized under
various conditions reproducing the well-known Maxwell–
Boltzmann distribution, Raleigh distribution, and other
distributions used in physics. Properties of the entropy
measure for the generalized entropy are examined and
their extension to multivariate cases, including Maxwell–
Boltzmannian and Raleighian, are obtained. To make
visible the usefulness of this theory of generalized entropy,
we also extend the formalism to include geometrical
probability problems, isotropic random points, spherically
symmetric and elliptically contoured statistical distribu-
tions. All results are given for real scalar, vector, as well as
matrix variables. Future work will have to link the theo-
retical results in this paper to the above mentioned second

way of reproducing the analysis results of the Super-
Kamiokande solar neutrino data considering fractional
space–time diffusion processes.
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