Skip to main content
Log in

Fractional Bhatnagar–Gross–Krook kinetic equation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The linear Boltzmann equation (LBE) approach is generalized to describe fractional superdiffusive transport of the Lévy walk type in external force fields. The time distribution between scattering events is assumed to have a finite mean value and infinite variance. It is completely characterized by the two scattering rates, one fractional and a normal one, which defines also the mean scattering rate. We formulate a general fractional LBE approach and exemplify it with a particularly simple case of the Bohm and Gross scattering integral leading to a fractional generalization of the Bhatnagar, Gross and Krook (BGK) kinetic equation. Here, at each scattering event the particle velocity is completely randomized and takes a value from equilibrium Maxwell distribution at a given fixed temperature. We show that the retardation effects are indispensable even in the limit of infinite mean scattering rate and argue that this novel fractional kinetic equation provides a viable alternative to the fractional Kramers–Fokker–Planck (KFP) equation by Barkai and Silbey and its generalization by Friedrich et al. based on the picture of divergent mean time between scattering events. The case of divergent mean time is also discussed at length and compared with the earlier results obtained within the fractional KFP. Also a phenomenological fractional BGK equation without retardation effects is proposed in the limit of infinite scattering rates. It cannot be, however, rigorously derived from a scattering model, being rather clever postulated. It this respect, this retardationless equation is similar to the fractional KFP by Barkai and Silbey. However, it corresponds to the opposite, much more physical limit and, therefore, also presents a viable alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Hoare, Adv. Chem. Phys. 20, 135 (1971)

    Google Scholar 

  2. L.P. Pitaevskii, E.M. Lifshitz, in Physical kinetics, Landau and Lifshitz course of theoretical physics (Pergamon Press, New York, 1981), Vol. 10

  3. H. Risken, Fokker–Planck equation, methods of solution and applications, 2nd edn. (Springer, Berlin, 1989)

  4. Yu.L. Klimontovich, Phys. Usp. 37, 737 (1994)

    Article  ADS  Google Scholar 

  5. N.G. Van Kampen, Stochastic processes in physics and chemistry, 2nd edn. (North-Holland, Amsterdam, 1997)

  6. D. Bohm, E.P. Gross, Phys. Rev. 75, 1864 (1949)

    Article  ADS  Google Scholar 

  7. E. Barkai, V. Fleurov, Chem. Phys. 212, 69 (1996)

    Article  ADS  Google Scholar 

  8. E. Barkai, J. Klafter, in Chaos, kinetics and nonlinear dynamics in fluids and plasmas, edited by S. Benkadda, G.M. Zaslavsky (Springer, Berlin, 1997)

  9. E. Barkai, V.N. Fleurov, Phys. Rev. E 56, 6355 (1997)

    Article  ADS  Google Scholar 

  10. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

    Article  ADS  Google Scholar 

  11. R. Zwanzig, Nonequilibrium statistical mechanics (Oxford University Press, Oxford, 2001)

  12. S. Succi, I.V. Karlin, H. Chen, Rev. Mod. Phys. 74, 1203 (2002)

    Article  ADS  Google Scholar 

  13. V.M. Kenkre, E.W. Montroll, M.F. Shlesinger, J. Stat. Phys. 9, 45 (1973)

    Article  ADS  Google Scholar 

  14. M.F. Shlesinger, J. Stat. Phys. 10, 421 (1974)

    Article  ADS  Google Scholar 

  15. H. Scher, E.M. Montroll, Phys. Rev. B 12, 2455 (1975)

    Article  ADS  Google Scholar 

  16. J.-P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  17. B.D. Hughes, in Random walks and random environments (Clarendon Press, Oxford, 1995), Vols. 1–2

  18. R. Balescu, Statistical dynamics: matter out of equilibrium (Imperial College Press, London, 1997)

  19. D. Ben-Avraham, Sh. Havlin, Diffusion and reactions in fractals and disordered systems (Cambridge University Press, Cambridge, 2000)

  20. T. Geisel, A. Zacherl, G. Radons, Z. Phys. B 71, 117 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Zumofen, J. Klafter, Phys. Rev. E 47, 851 (1993)

    Article  ADS  Google Scholar 

  22. G. Zumofen, J. Klafter, Physica D 69, 436 (1993)

    Article  ADS  Google Scholar 

  23. B.J. West, P. Grigolini, R. Metzler, T.F. Nonnenmacher, Phys. Rev. E 55, 99 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  Google Scholar 

  25. I. Goychuk, Phys. Rev. E 86, 021113 (2012)

    Article  ADS  Google Scholar 

  26. E. Barkai, R.J. Silbey, J. Chem. Phys. B 104, 3866 (2000)

    Article  Google Scholar 

  27. R. Friedrich, F. Jenko, A. Baule, S. Eule, Phys. Rev. Lett. 96, 230601 (2006)

    Article  ADS  Google Scholar 

  28. R. Friedrich, F. Jenko, A. Baule, S. Eule, Phys. Rev. E 74, 041103 (2006)

    Article  ADS  Google Scholar 

  29. R. Metzler, J. Klafter, Phys. Rev. E 61, 6308 (2000)

    Article  ADS  Google Scholar 

  30. D.E. Cox, Renewal theory (Methuen, London, 1962)

  31. C. Godreche, J.M. Luck, J. Stat. Phys. 104, 489 (2001)

    Article  Google Scholar 

  32. P. Allegrini, G. Aquino, P. Grigolini, L. Palatella, A. Rosa, B.J. West, Phys. Rev. E 71, 066109 (2005)

    Article  ADS  Google Scholar 

  33. G. Margolin, E. Barkai, J. Chem. Phys. 121, 1566 (2004)

    Article  ADS  Google Scholar 

  34. D. Froemberg, E. Barkai, Eur. Phys. J. B 86, 331 (2013)

    Article  ADS  Google Scholar 

  35. J.K.E. Tunaley, Phys. Rev. Lett. 33, 1037 (1974)

    Article  ADS  Google Scholar 

  36. I. Goychuk, Commun. Theor. Phys. 62, 497 (2014)

    Article  MathSciNet  Google Scholar 

  37. I. Goychuk, P. Hänggi, Phys. Rev. Lett. 91, 070601 (2003)

    Article  ADS  Google Scholar 

  38. I. Goychuk, Phys. Rev. E 70, 016109 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  39. R. Gorenflo, F. Mainardi, in Fractals and fractional calculus in continuum mechanics, edited by A. Carpinteri, F. Mainardi (Springer, Wien, 1997), pp. 223–276

  40. I.M. Sokolov, J. Klafter, Chaos 15, 026103 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  41. A.V. Chechkin, V.Yu. Gonchar, R. Gorenflo, N. Korabel, I.M. Sokolov, Phys. Rev. E 78, 021111 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Papoulis, in Probability, random variables, and stochastic processes, 3rd edn. (McGraw-Hill Book Company, New York, 1991), pp. 430–432

  43. F. Mainardi, P. Pironi, Extr. Math. 11, 140 (1996)

    Google Scholar 

  44. E. Lutz, Phys. Rev. Lett. 93, 190602 (2004)

    Article  ADS  Google Scholar 

  45. P. Siegle, I. Goychuk, P. Hänggi, Europhys. Lett. 93, 20002 (2011)

    Article  ADS  Google Scholar 

  46. I. Goychuk, Adv. Chem. Phys. 150, 187 (2012)

    Google Scholar 

  47. H. Stehfest, Commun. ACM 13, 47 (1970) [H. Stehfest,Commun. ACM 13, 624 (1970) (Erratum)]

    Article  Google Scholar 

  48. I.M. Sokolov, R. Metzler, Phys. Rev. E 67, 010101(R) (2003)

    Article  ADS  Google Scholar 

  49. S. Eule, R. Friedrich, F. Jenko, D. Kleinhans, J. Phys. Chem. B 111, 11474 (2007)

    Article  Google Scholar 

  50. W.T. Coffey, Y.P. Kalmykov, The Langevin equation, with applications to stochastic problems in physics, chemistry and electrical engineering, 3rd edn. (World Scientific, New Jersey, 2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Goychuk.

Additional information

Contribution to the Topical Issue “Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook”, edited by Ryszard Kutner and Jaume Masoliver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goychuk, I. Fractional Bhatnagar–Gross–Krook kinetic equation. Eur. Phys. J. B 90, 208 (2017). https://doi.org/10.1140/epjb/e2017-80297-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80297-x

Navigation