Skip to main content
Log in

Duality-mediated critical amplitude ratios for the (2 + 1)-dimensional S = 1XY model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The phase transition for the (2 + 1)-dimensional spin-S = 1XY model was investigated numerically. Because of the boson-vortex duality, the spin stiffness ρ s in the ordered phase and the vortex-condensate stiffness ρ v in the disordered phase should have a close relationship. We employed the exact diagonalization method, which yields the excitation gap directly. As a result, we estimate the amplitude ratios ρ s,v /Δ (Δ: Mott insulator gap) by means of the scaling analyses for the finite-size cluster with N ≤ 22 spins. The ratio ρ s /ρ v admits a quantitative measure of deviation from selfduality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Stone, P.R. Thomas, Phys. Rev. Lett. 41, 351 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  2. M.P.A. Fisher, D.H. Lee, Phys. Rev. B 39, 2756 (1989)

    Article  ADS  Google Scholar 

  3. X.G. Wen, A. Zee, Int. J. Mod. Phys. B 4, 437 (1990)

    Article  ADS  Google Scholar 

  4. S. Gazit, D. Podolsky, A. Auerbach, Phys. Rev. Lett. 113, 240601 (2014)

    Article  ADS  Google Scholar 

  5. M. Swanson, Y.L. Loh, M. Randeria, N. Trivedi, Phys. Rev. X 4, 021007 (2014)

    Google Scholar 

  6. J. Corson, R. Mallozz, J. Orenstein, J.N. Eckstein, I. Bozovic, Nature 398, 221 (1999)

    Article  ADS  Google Scholar 

  7. R.W. Crane, N.P. Armitage, A. Johansson, G. Sambandamurthy, D. Shahar, G. Grüner, Phys. Rev. B 75, 094506 (2007)

    Article  ADS  Google Scholar 

  8. J.F. Sherson, C. Eeitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Nature 467, 68 (2010)

    Article  ADS  Google Scholar 

  9. S. Gazit, D. Podolsky, A. Auerbach, D.P. Arovas, Phys. Rev. B 88, 235108 (2013)

    Article  ADS  Google Scholar 

  10. F. Rose, N. Dupuis, Phys. Rev. B 95, 014513 (2017)

    Article  ADS  Google Scholar 

  11. F. Rose, F. Léonard, N. Dupuis, Phys. Rev. B 91, 224501 (2015)

    Article  ADS  Google Scholar 

  12. A. Rançon, O. Kodio, N. Dupuis, P. Lecheminant, Phys. Rev. E 88, 012113 (2013)

    Article  ADS  Google Scholar 

  13. S. Gazit, D. Podolsky, A. Auerbach, Phys. Rev. Lett. 110, 140401 (2013)

    Article  ADS  Google Scholar 

  14. K. Chen, L. Liu, Y. Deng, L. Pollet, N. Prokof’ev, Phys. Rev. Lett. 110, 170403 (2013)

    Article  ADS  Google Scholar 

  15. Y. Nishiyama, Nucl. Phys. B 897, 555 (2015)

    Article  ADS  Google Scholar 

  16. A. Rançon, N. Dupuis, Phys. Rev. B 89, 180501 (2014)

    Article  ADS  Google Scholar 

  17. Y.T. Katan, D. Podolsky, Phys. Rev. B 91, 075132 (2015)

    Article  ADS  Google Scholar 

  18. M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauß, C. Gross, E. Demler, S. Kuhrand, I. Bloch, Nature 487, 454 (2012)

    Article  ADS  Google Scholar 

  19. D. Pekker, C.M. Varma, Annu. Rev. Condens. Matter Phys. 6, 269 (2015)

    Article  ADS  Google Scholar 

  20. E.R. Gagliano, C.A. Balseiro, Phys. Rev. Lett. 59, 2999 (1987)

    Article  ADS  Google Scholar 

  21. See Supplemental Material of reference [4]

  22. Y. Nishiyama, Phys. Rev. E 78, 021135 (2008)

    Article  ADS  Google Scholar 

  23. M.A. Novotny, J. Appl. Phys. 67, 5448 (1990)

    Article  ADS  Google Scholar 

  24. M. Campostrini, M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B 74, 144506 (2006)

    Article  ADS  Google Scholar 

  25. E. Burovski, J. Machta, N. Prokof’ev, B. Svistunov, Phys. Rev. B 74, 132502 (2006)

    Article  ADS  Google Scholar 

  26. K. Damle, S. Sachdev, Phys. Rev. B 56, 8714 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Nishiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, Y. Duality-mediated critical amplitude ratios for the (2 + 1)-dimensional S = 1XY model. Eur. Phys. J. B 90, 173 (2017). https://doi.org/10.1140/epjb/e2017-80286-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80286-1

Keywords

Navigation