Skip to main content
Log in

Giant Faraday rotation in graphene/MnF2 photonic crystals

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effect of graphene on the Faraday rotation (FR) in dielectrics/antiferromagnetic photonic crystals (D/AF PCs) is investigated by using the forth-order transfer matrix, in which the graphene (Gr) is embedded on the surface of AF. When the incident light is vertical to the surface of D/Gr/AF PCs, Gr will present anisotropic properties, in which the optical conductivity is characterized by the tensor. The numerical simulations show that the FR angle almost is enhanced by one order compared with the ones of D/AF PCs when the number of D/Gr/AF in the PC is 9. In addition, the maxima and positions of the FR angles can be adjusted by changing the external magnetic field strength. On the other hand, the effects of the Fermi energy of Gr on the FR also are discussed since it can be tuned by controlling the applied back-gate voltage. These results may be valuable in the design of THz devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mansuripur, The principles of magneto-optical recording (Cambridge University Press, Cambridge, 1995)

  2. K.H. Chung, T. Kato, S. Mito, H. Takagi, M. Inoue, J. Appl. Phys. 107, 09A930 (2010)

    Article  Google Scholar 

  3. R. Zhu, S. Fu, H. Peng, J. Magn. Magn. Mater. 323, 144 (2011)

    Article  ADS  Google Scholar 

  4. S.T. Chui, S. Liu, Z. Lin, J. Phys.: Condens. Matter. 22, 182201 (2010)

    ADS  Google Scholar 

  5. Z. Wu, M. Levy, V.J. Fratello, A.M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010)

    Article  ADS  Google Scholar 

  6. M. Levy, R. Li, Appl. Phys. Lett. 89, 121113 (2006)

    Article  ADS  Google Scholar 

  7. Z.F. Lin, S.T. Chui, Opt. Lett. 32, 2288 (2007)

    Article  ADS  Google Scholar 

  8. J.P. Kotthaus, V. Jaccarino, Phys. Rev. Lett. 28, 1649 (1972)

    Article  ADS  Google Scholar 

  9. L. Remer, B. Luthi, H. Sauer, R. Geick, R.E. Camley, Phys. Rev. Lett. 56, 2752 (1986)

    Article  ADS  Google Scholar 

  10. K. Abraha, D.E. Brown, T. Dumelow, T.J. Parker, D.R. Tilley, Phys. Rev. B 50, 6808 (1994)

    Article  ADS  Google Scholar 

  11. D.E. Brown, T. Dumelow, T.J. Parker, K. Abraha, D.R. Tilley, Phys. Rev. B 49, 12266 (1994)

    Article  ADS  Google Scholar 

  12. X.Z. Wang, J. Phys.: Condens. Matter. 17, 5447 (2005)

    ADS  Google Scholar 

  13. X.Z. Wang, Y. Zhao, J. Appl. Phys. 113, 023501 (2013)

    Article  ADS  Google Scholar 

  14. D.A. Kuzmin, I.V. Byckov, V.G. Shavrov, V.V. Temnov, Nano Lett. 16, 4391 (2016)

    Article  ADS  Google Scholar 

  15. X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, Y. Wang, Plasmonics 1, 7 (2016)

    Google Scholar 

  16. S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, C. Xu, J. Phys. D: Appl. Phys. 50, 195101 (2017)

    Article  ADS  Google Scholar 

  17. R. Abdi-Ghaleh, M. Sattari, Superlattice Microstruct. 97, 78 (2016)

    Article  ADS  Google Scholar 

  18. M. Zamani, A. Hocini, Opt. Mater. 58, 306 (2016)

    Article  ADS  Google Scholar 

  19. Y. Li, K.-D. Zhu, Appl. Phys. B 116, 437 (2014)

    Article  ADS  Google Scholar 

  20. H. Da, G. Liang, Appl. Phys. Lett. 98, 261915 (2011)

    Article  ADS  Google Scholar 

  21. M. Sattari, N. Pourali, B. Sadri, J. Appl. Phys. 122, 073102 (2017)

    Article  ADS  Google Scholar 

  22. I. Crassee, J. Levallois, A.L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, A.B. Kuzmenko, Nat. Phys. 7, 48 (2010)

    Article  Google Scholar 

  23. S.V. Kryuchkov, E.I. Kukhar, J. Mod. Phys. 3, 994 (2012)

    Article  Google Scholar 

  24. L.A. Chizhova, Phys. Rev. B 92, 125411 (2015)

    Article  ADS  Google Scholar 

  25. T. Low, T. Avouris, ACS Nano 8, 1086 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Gao, Y. & Fu, S. Giant Faraday rotation in graphene/MnF2 photonic crystals. Eur. Phys. J. B 91, 41 (2018). https://doi.org/10.1140/epjb/e2017-80263-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80263-8

Keywords

Navigation