Skip to main content
Log in

A method to calculate thermal conductivity of a nonperiodic system, bamboo Si1−xGex nanowire with axially degraded components

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

For a nonperiodic system, a bamboo Si1−x Ge x nanowire with axially degraded components, it is impossible to obtain its phonon dispersion relations through lattice dynamic or the first principle calculation. Therefore, we present a simple and available method to solve this problem. At first, the Si1−x Ge x nanowire with axially degraded component is divided into several sections according to its component distribution like bamboos’ sections formed in the growth process. For each section with a given x value, we constructed a pseudo-cell to calculate its phonon dispersion relations. Thermal conductances of junctions and of each section are then calculated by the phonon mismatch model and the phonon transmission probability with diffusive and ballistic portions. The dependences of thermal conductivity on the length of each section and the gradient of degraded component between sections are presented. We studied thermal conductivity dependence on temperature, length and diameter of the Si1−x Ge x nanowire with axially degraded component. And we found κ ~ l 0.8, in which the exponent 0.8 is ascribed to the competition between phonons ballistic and diffusive transport. Furthermore, thermal conductivities along axial (100), (110), and (111) directions are discussed in detail. The method provides a simple and available tool to study thermal conductivity of a non-period system, such as a quasiperiodic superlattice or a nanowire with axially degraded component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.J. Zhuang, C.Z. Ning, A.L. Pan, Adv. Mater. 24, 13 (2012)

    Article  Google Scholar 

  2. C.J. Kim, H.S. Lee, Y.J. Cho, J.E. Yang, R.R. Lee, J.K. Lee, M.H. Jo, Adv. Mater. 23, 1025 (2011)

    Article  Google Scholar 

  3. L. Ma, W. Hu, Q.L. Zhang, P.Y. Ren, X.J. Zhuang, H. Zhou, J.Y. Xu, H.L. Li, Z.P. Shan, X.X. Wang, L. Liao, H.Q. Xu, A.L. Pan, Nano Lett. 14, 694 (2014)

    Article  ADS  Google Scholar 

  4. P.F. Guo, W. Hu, Q.L. Zhang, X.J. Zhuang, X.L. Zhu, H. Zhou, Z.P. Shan, J.J.Y. Xu, A.L. Pan, Adv. Mater. 26, 2844 (2014)

    Article  Google Scholar 

  5. Y.G. Ma, X. Guo, X.Q. Wu, L. Dai, L.M. Tong, Adv. Opt. Photo. 5, 216 (2013)

    Article  Google Scholar 

  6. Y. Lu, F.X. Gu, C. Meng, H.K. Yu, Y.G. Ma, W. Fang, L.M. Tong, Opt. Exp. 21, 22314 (2013)

    Article  ADS  Google Scholar 

  7. W. Guo, M. Zhang, A. Banerjee, P. Bhattacharya, Nano. Lett. 10, 3355 (2010)

    Article  ADS  Google Scholar 

  8. J.Y. Xu, L. Ma, P.F. Guo, X.J. Zhuang, X.L. Zhu, W. Hu, X.F. Duan, A.L. Pan, J. Am. Chem. Soc. 134, 12394 (2012)

    Article  Google Scholar 

  9. Z.C. Liu, L.J. Yin, H. Ning, Z.Y. Yang, L.M. Tong, C.Z. Ning, Nano Lett. 13, 4945 (2013)

    Article  ADS  Google Scholar 

  10. Z.Y. Yang, D.L. Wang, C. Meng, Z.M. Wu, Y. Wang, Y.G. Ma, L. Dai, X.W. Liu, T. Hasan, X. Liu, Q. Yang, Nano Lett. 14, 3153 (2014)

    Article  ADS  Google Scholar 

  11. P.L. Nichols, Z.C. Liu, L.J. Yin, S. Turkdogan, F. Fan, C.Z. Ning, Nano Lett. 15, 909 (2015)

    Article  ADS  Google Scholar 

  12. L. Li, H. Lu, Z.Y. Yang, L.M. Tong, Y. Bando, D. Golberg, Adv. Mater. 25, 1109 (2013)

    Article  Google Scholar 

  13. J. Huh, H. Yun, D.C. Kim, A.M. Munshi, D.L. Dheeraj, H. Kauko, A. van Helvoort, S.W. Lee, B. Fimland, H. Weman, Nano Lett. 15, 3709 (2015)

    Article  ADS  Google Scholar 

  14. M. Amato, M. Palummo, R. Rurali, S. Ossicini, Chem. Rev. 114, 1371 (2014)

    Article  Google Scholar 

  15. L.H. Shi, D.L. Yao, G. Zhang, B.W. Li, Appl. Phys. Lett. 96, 173108 (2010)

    Article  ADS  Google Scholar 

  16. A. Skye, P.K. Schelling, J. Appl. Phys. 103, 113524 (2008)

    Article  ADS  Google Scholar 

  17. J. Chen, G. Zhang, B.W. Li, Appl. Phys. Lett. 95, 073117 (2009)

    Article  ADS  Google Scholar 

  18. H.J. Kim, I. Kim, H.J. Choi, W. Kim, Appl. Phys. Lett. 96, 233106 (2010)

    Article  ADS  Google Scholar 

  19. Z. Wang, N. Mingo, Appl. Phys. Lett. 97, 101903 (2010)

    Article  ADS  Google Scholar 

  20. T.K. Hsiao, H.K. Chang, S.C. Liou, M.W. Chu, S.C. Lee, C.W. Chang, Nat. Nanotechnol. 8, 534 (2013)

    Article  ADS  Google Scholar 

  21. D.M. Rowe, Thermoelectrics Handbook, Macro to Nano (CRC Press, Taylor & Francis Group, 2006)

  22. L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014)

    Article  ADS  Google Scholar 

  23. J.E. Yang, C.B. Jin, C.J. Kim, M.H. Jo, Nano Lett. 6, 2679 (2006)

    Article  ADS  Google Scholar 

  24. J.E. Yang, W.H. Park, C.J. Kim, Z.H. Kim, M.H. Jo, Appl. Phys. Lett. 92, 263111 (2008)

    Article  ADS  Google Scholar 

  25. C.J. Kim, H.S. Lee, Y.J. Yang, R.R. Lee, J.K. Lee, M.H. Jo, Adv. Mater. 23, 1025 (2011)

    Article  Google Scholar 

  26. M.G. Xia, J.Y. Han, Z.F. Cheng, C.P. Liang, S.L. Zhang, Appl. Phys. Lett. 105, 101902 (2014)

    Article  ADS  Google Scholar 

  27. M.K.Y. Chan, J. Reed, D. Donadio, T. Mueller, Y.S. Meng, G. Galli, G. Ceder, Phys. Rev. B 81, 174303 (2010)

    Article  ADS  Google Scholar 

  28. J. Kristensen, N.J. Zabaras, Phys. Rev. B 91, 054105 (2015)

    Article  ADS  Google Scholar 

  29. K.H. Lin, A. Strachan, Phys. Rev. B 87, 115302 (2013)

    Article  ADS  Google Scholar 

  30. R. Rurali, X. Cartoixà, L. Colombo, Phys. Rev. B 90, 041408(R) (2014)

    Article  ADS  Google Scholar 

  31. K.R. Hahn, M. Puligheddu, L. Colombo, Phys. Rev. B 91, 195313 (2015)

    Article  ADS  Google Scholar 

  32. C.H. Baker, P.M. Norris, Phys. Rev. B 91, 180302 (2015)

    Article  ADS  Google Scholar 

  33. H.K. Seong, E.K. Jeon, M.H. Kim, H. Oh, J.O. Lee, J.J. Kim, H.J. Choi, Nano Lett. 8, 3656 (2008)

    Article  ADS  Google Scholar 

  34. Q. Cheng, G. Goncher, R. Solanki, J. Jordan, Nanotechnology 18, 075302 (2007)

    Article  ADS  Google Scholar 

  35. J.C. Aubry, T. Tyliszczak, A.P. Hitchcock, J.M. Baribeau, T.E. Jackman, Phys. Rev. B 59, 12872 (1999)

    Article  ADS  Google Scholar 

  36. P. Venezuela, G.M. Dalpian, A.J.R. da Silva, A. Fazzio, Phys. Rev. B 64, 193202 (2001)

    Article  ADS  Google Scholar 

  37. Y.R. Luo, Bond Dissociation Energies, in CRC Handbook of Chemistry, Physics, 89th edn. (2008), updated every year

  38. F. Herman, J. Phys. Chem. Solids 8, 405 (1959)

    Article  ADS  Google Scholar 

  39. A.D. Zdetsis, C.S. Wang, Phys. Rev. B 19, 2999 (1979)

    Article  ADS  Google Scholar 

  40. N. Mingo, Phys. Rev. B 68, 113308 (2003)

    Article  ADS  Google Scholar 

  41. P. Reddy, K. Castelino, A. Majumdar, Appl. Phys. Lett. 87, 211908 (2005)

    Article  ADS  Google Scholar 

  42. E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989)

    Article  ADS  Google Scholar 

  43. H.T. Wang, Y.B. Xu, M. Shimono, Y. Tanaka, M. Yamazaki, Mater. Trans. 48, 2349 (2007)

    Article  Google Scholar 

  44. A. Skye, P.K. Schelling, J. Appl. Phys. 103, 113524 (2008)

    Article  ADS  Google Scholar 

  45. J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, D.S. Beers, J. Appl. Phys. 35, 2899 (1964)

    Article  ADS  Google Scholar 

  46. S. Lu, A.J.H. McGaughey, AIP Adv. 5, 053205 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minggang Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, M., Han, J., Cheng, Z. et al. A method to calculate thermal conductivity of a nonperiodic system, bamboo Si1−xGex nanowire with axially degraded components. Eur. Phys. J. B 90, 199 (2017). https://doi.org/10.1140/epjb/e2017-80211-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80211-8

Keywords

Navigation