Skip to main content
Log in

Interband coherence induced correction to Thouless pumping: possible observation in cold-atom systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In Thouless pump, the charge transport in a one-dimensional insulator over an adiabatic cycle is topologically quantized. For nonequilibrium initial states, however, interband coherence will induce a previously unknown contribution to Thouless pumping. Though not geometric in nature, this contribution is independent of the time scale of the pumping protocol. In this work, we perform a detailed analysis of our previous finding [H.L. Wang et al., Phys. Rev. B 91, 085420 (2015)] in an already available cold-atom setup. We show that initial states with interband coherence can be obtained via a quench of the system’s Hamiltonian. Adiabatic pumping in the post-quench system are then examined both theoretically and numerically, in which the interband coherence is shown to play an important role and can hence be observed experimentally. By choosing adiabatic protocols with different switching-on rates, we also show that the contribution of interband coherence to adiabatic pumping can be tuned. It is further proposed that the interband coherence induced correction to Thouless pumping may be useful in capturing a topological phase transition point. All our results have direct experimental interests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  2. X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  3. S.Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters (Springer-Verlag, Berlin, Heidelberg, 2012)

  4. C.-K. Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Rev. Mod. Phys. 88, 035005 (2016)

    Article  ADS  Google Scholar 

  5. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  6. L. Lu, J.D. Joannopoulos, M. Soljačic, Nat. Phys. 12, 626 (2016)

    Article  Google Scholar 

  7. R. Süsstrunk, S.D. Huber, Science 349, 47 (2015)

    Article  ADS  Google Scholar 

  8. Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, B. Zhang, Phys. Rev. Lett. 114, 114301 (2015)

    Article  ADS  Google Scholar 

  9. D.J. Thouless, Phys. Rev. B 27, 6083 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, Y. Takahashi, Nat. Phys. 12, 296 (2016)

    Article  Google Scholar 

  11. M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, I. Bloch, Nat. Phys. 12, 350 (2016)

    Article  Google Scholar 

  12. T. Oka, H. Aoki, Phys. Rev. B 79, 081406(R) (2009)

    Article  ADS  Google Scholar 

  13. J.-I. Inoue, A. Tanaka, Phys. Rev. Lett. 105, 017401 (2010)

    Article  ADS  Google Scholar 

  14. T. Kitagawa, E. Berg, M.S. Rudner, E. Demler, Phys. Rev. B 82, 235114 (2010)

    Article  ADS  Google Scholar 

  15. N.H. Lindner, G. Refael, V. Galitski, Nat. Phys. 7, 490 (2011)

    Article  Google Scholar 

  16. L. Jiang, T. Kitagawa, J. Alicea, A.R. Akhmerov, D. Pekker, G. Refael, J.I. Cirac, E. Demler, M.D. Lukin, P. Zoller, Phys. Rev. Lett. 106, 220402 (2011)

    Article  ADS  Google Scholar 

  17. Z. Gu, H.A. Fertig, D.P. Arovas, A. Auerbach, Phys. Rev. Lett. 107, 216601 (2011)

    Article  ADS  Google Scholar 

  18. B. Dòra, J. Cayssol, F. Simon, R. Moessner, Phys. Rev. Lett. 108, 056602 (2012)

    Article  ADS  Google Scholar 

  19. D.Y.H. Ho, J.B. Gong, Phys. Rev. Lett. 109, 010601 (2012)

    Article  ADS  Google Scholar 

  20. Y.T. Katan, D. Podolsky, Phys. Rev. Lett. 110, 016802 (2013)

    Article  ADS  Google Scholar 

  21. Q.-J. Tong, J.-H. An, J.B. Gong, H.-G. Luo, C.H. Oh, Phys. Rev. B 87, 201109(R) (2013)

    Article  ADS  Google Scholar 

  22. M.S. Rudner, N.H. Lindner, E. Berg, M. Levin, Phys. Rev. X 3, 031005 (2013)

    Google Scholar 

  23. L. Zhou, H. Wang, D.Y.H. Ho, J.B. Gong, Eur. Phys. J. B 87, 204 (2014)

    Article  ADS  Google Scholar 

  24. G. Usaj, P.M. Perez-Piskunow, L.E.F. Foa Torres, C.A. Balseiro, Phys. Rev. B 90, 115423 (2014)

    Article  ADS  Google Scholar 

  25. L.E.F. Foa Torres, P.M. Perez-Piskunow, C.A. Balseiro, G. Usaj, Phys. Rev. Lett. 113, 266801 (2014)

    Article  ADS  Google Scholar 

  26. D.Y.H. Ho, J.B. Gong, Phys. Rev. B 90, 195419 (2014)

    Article  ADS  Google Scholar 

  27. M. Lababidi, I.I. Satija, E. Zhao, Phys. Rev. Lett. 112, 026805 (2014)

    Article  ADS  Google Scholar 

  28. D. Carpentier, P. Delplace, M. Fruchart, K. Gawedzki, Phys. Rev. Lett. 114, 106806 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. T.S. Xiong, J.B. Gong, J.H. An, Phys. Rev. B 93, 184306 (2016)

    Article  ADS  Google Scholar 

  30. R.W. Bomantara, G.N. Raghava, L.W. Zhou, J.B. Gong, Phys. Rev. E 93, 022209 (2016)

    Article  ADS  Google Scholar 

  31. P. Titum, E. Berg, M.S. Rudner, G. Refael, N.H. Lindner, Phys. Rev. X 6, 021013 (2016)

    Google Scholar 

  32. S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Öhberg, N. Goldman, R.R. Thomson, Nat. Commun. 8, 13918 (2017)

    Article  ADS  Google Scholar 

  33. W. DeGottardi, D. Sen, S. Vishveshwara, New J. Phys. 13, 065028 (2011)

    Article  ADS  Google Scholar 

  34. M.S. Foster, M. Dzero, V. Gurarie, E.A. Yuzbashyan, Phys. Rev. B 88, 104511 (2013)

    Article  ADS  Google Scholar 

  35. P.D. Sacramento, Phys. Rev. E 90, 032138 (2014)

    Article  ADS  Google Scholar 

  36. G. Kells, D. Sen, J.K. Slingerland, S. Vishveshwara, Phys. Rev. B 89, 235130 (2014)

    Article  ADS  Google Scholar 

  37. Y. Dong, L. Dong, M. Gong, H. Pu, Nat. Commun. 6, 6103 (2015)

    Article  ADS  Google Scholar 

  38. L. D’Alessio, M. Rigol, Nat. Commun. 6, 8336 (2015)

    Article  Google Scholar 

  39. M.D. Caio, N.R. Cooper, M.J. Bhaseen, Phys. Rev. Lett. 115, 236403 (2015)

    Article  ADS  Google Scholar 

  40. P. Wang, W. Yi, X. Gao, New J. Phys. 17, 013029 (2015)

    Article  ADS  Google Scholar 

  41. M.D. Caio, N.R. Cooper, M.J. Bhaseen, Phys. Rev. B 94, 155104 (2016)

    Article  ADS  Google Scholar 

  42. Y. Hu, P. Zoller, J.C. Budich, Phys. Rev. Lett. 117, 126803 (2016)

    Article  ADS  Google Scholar 

  43. J.H. Wilson, J.C.W. Song, G. Refael, Phys. Rev. Lett. 117, 235302 (2016)

    Article  ADS  Google Scholar 

  44. F.N. Ünal, E.J. Mueller, M.Ö. Oktel, Phys. Rev. A 94, 053604 (2016)

    Article  ADS  Google Scholar 

  45. P.D. Sacramento, Phys. Rev. E 93, 062117 (2016)

    Article  ADS  Google Scholar 

  46. Z. Huang, A.V. Balatsky, Phys. Rev. Lett. 117, 086802 (2016)

    Article  ADS  Google Scholar 

  47. A.G. Grushin, S. Roy, M. Haque, J. Stat. Mech. 8, 083103 (2016)

    Article  Google Scholar 

  48. P. Wang, S. Kehrein, New J. Phys. 18, 053003 (2016)

    Article  ADS  Google Scholar 

  49. C. Wang, P. Zhang, X. Chen, J. Yu, H. Zhai, Phys. Rev. Lett. 118, 185701 (2017)

    Article  ADS  Google Scholar 

  50. U. Bhattacharya, J. Hutchinson, A. Dutt, Phys. Rev. B 95, 144304 (2017)

    Article  ADS  Google Scholar 

  51. H.L. Wang, L.W. Zhou, J.B. Gong, Phys. Rev. B 91, 085420 (2015)

    Article  ADS  Google Scholar 

  52. L.W. Zhou, D.Y. Tan, J.B. Gong, Phys. Rev. B 92, 245409 (2015)

    Article  ADS  Google Scholar 

  53. M.J. Rice, E.J. Mele, Phys. Rev. Lett. 49, 1455 (1982)

    Article  ADS  Google Scholar 

  54. P.G. Harper, Proc. Phys. Soc. Lond. A 68, 874 (1955)

    Article  ADS  Google Scholar 

  55. D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangbin Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghava, G.N., Zhou, L. & Gong, J. Interband coherence induced correction to Thouless pumping: possible observation in cold-atom systems. Eur. Phys. J. B 90, 143 (2017). https://doi.org/10.1140/epjb/e2017-80195-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80195-3

Keywords

Navigation