Skip to main content
Log in

Ab-initio molecular dynamics and vibrational Raman spectroscopy investigations of quartz polymorph at high temperature

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Quartz has found a wide range of applications over the past years. In the present work, the temperature dependence of microcrystalline quartz is investigated with Raman spectroscopy and DFT-based molecular dynamics simulations. We aimed to determine the structure at short and medium range distances as a function of the increasing temperature. The dynamics and the structural changes are analysed in terms of time-dependent properties, and the vibrational analysis obtained from calculated dipole trajectory and vibrational density of states (VDOS). The computed data is compared to Raman and infrared spectroscopic measurements. The approach is of a particularly great interest when we focus on the structural behaviour, and the dynamical disorder observed and characterised through geometric and thermodynamic data. The calculations confirm that the infrared and Raman signature as a function of temperature provide a sensitive analysis of the structural behaviour of quartz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.W. Matson, S.K. Sharma, J.A. Philpotts, J. Non-Cryst. 58, 323 (1983)

    Article  ADS  Google Scholar 

  2. B.O. Mysen, J.D. Frantz, Chem. Geol. 96, 321 (1992)

    Article  ADS  Google Scholar 

  3. T.M.B. Farias, R.F. Gennari, J.F.D. Chubaci, S. Watanabe, Phys. Proc. 2, 493 (2009)

    Article  ADS  Google Scholar 

  4. V. Ranieri, D. Bourgogne, S. Darracq, M. Cambon, J. Haines, O. Cambon, R. Leparc, C. Levelut, A. Largeteau, G. Demazeau, Phys. Rev. B: Condens. Matter Mater. Phys. 79, 224 (2009)

    Article  Google Scholar 

  5. R. Haus, S. Prinz, C. Priess, Quartz: Deposits, Mineralogy and Analytics, Assessment of High Purity Quartz Resources (Springer, 2012)

  6. Y. Zheng, S. Wang, Appl. Surf. Sci. 258, 4698 (2012)

    Article  ADS  Google Scholar 

  7. J.C. Brice, Rev. Mod. Phys. 57, 105 (1985)

    Article  ADS  Google Scholar 

  8. C.Z. Tan, H. Li, L. Chen, Appl. Phys. B 86, 129 (2007)

    Article  ADS  Google Scholar 

  9. C.Z. Tan, Opt. Exp. 16, 14675 (2008)

    Article  ADS  Google Scholar 

  10. C.Z. Tan, Appl. Phys. B 80, 875 (2005)

    Article  ADS  Google Scholar 

  11. E. Hecht, Optics (Addison Wesley, New York, 2002)

  12. G. Dolino, J.P. Baccheimer, B. Berge, C.M.E. Zeyen, J. Phys. 45, 361 (1984)

    Article  Google Scholar 

  13. M. Dracinsky, L. Benda, P. Bour, Chem. Phys. Lett. 512, 54 (2011)

    Article  ADS  Google Scholar 

  14. Y. Liang, C.R. Miranda, S. Scandolo, J. Chem. Phys. 125, 194524 (2006)

    Article  ADS  Google Scholar 

  15. E.V. Burchart, H.V. Bekkum, B.V. Graaf, J. Chem. Soc. Faraday Trans. 88, 1161 (1992)

    Article  Google Scholar 

  16. K. Kihara, Phys. Chem. Miner. 28, 365 (2001)

    Article  ADS  Google Scholar 

  17. M. Dapiaggi, L. Pagliari, A. Pavese, L. Sciascia, M. Merli, F. Francescon, J. Eur. Ceram. Soc. (2015)

  18. C.V. Raman, T.M.K. Nedungadi, Nature (1940)

  19. J. F. Scott, Rev. Mod. Phys. 46, 83 (1974)

    Article  ADS  Google Scholar 

  20. W. Cochran, Adv. Phys. 9, 387 (1960)

    Article  ADS  Google Scholar 

  21. W. Cochran, Adv. Phys. 10, 401 (1961)

    Article  ADS  Google Scholar 

  22. J. Etchepare, M. Merian, L. Smetankine, J. Chem. Phys. 60, 1873 (1974)

    Article  ADS  Google Scholar 

  23. B. Silvi, P. Darco, M. Causa, J. Chem. Phys. 93, 7225 (1990)

    Article  ADS  Google Scholar 

  24. K.J. Kingma, R.J. Hemley, Am. Miner. 79, 269 (1994)

    Google Scholar 

  25. M.M. Islam, F. Datchi, Phys. Astron. 56, 91 (2015)

    Google Scholar 

  26. E.R. Lippincott, A.V. Valkenburg, C.H. Weir, E.N. Bunting, J. Res. Natl. Bureau Stand. 61, 1 (1958)

    Article  Google Scholar 

  27. F. Gervais, B. Piriou, Phys. Rev. B 11, 3944 (1975)

    Article  ADS  Google Scholar 

  28. De Sousa D. Meneses, M. Eckes, L.D. Campo, P. Echegut, J. Phys. Conden. Matter 26, 255402 (2014)

    Article  Google Scholar 

  29. R. Dovesi, V. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale et al., CRYSTAL09 User’s Manual (University of Torino, Italy, 2009)

  30. K.K. Inglis, J.P. Corley, P. Florian, J. Cabana, R.D. Bayliss, F. Blanc, Chem. Mater. (2016)

  31. X. Lei, Y. Jee, K. Huang, J. Mater. Chem. A 3, 19920 (2015)

    Article  Google Scholar 

  32. F.L. Galeener, P.N. Sen, Phys. Rev. B 17, 1928 (1978)

    Article  ADS  Google Scholar 

  33. W.F. Sherman, G.R. Wilkinson, in Advances in Infrared and Raman Spectroscopy, edited by R.J.H. Clark, R.E. Hester (Heyden, London, 1983), Vol. 232

  34. G. Lucazeau, J. Raman Spectrosc. 34, 478 (2003)

    Article  ADS  Google Scholar 

  35. CPMD, Copyright IBM Corp 1990–2008, Copyright MPI fur Festko rperforschung Stuttgart 1997–2001

  36. K. kihara, Eur. J. Miner. 2, 63 (1990)

    Article  Google Scholar 

  37. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  38. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  39. X. Li, J. Oomens, J.R. Eyler, D.T. Moore, S.S. Iyengar, J. Chem. Phys. 132, 244301 (2010)

    Article  ADS  Google Scholar 

  40. M. Thomas, M. Brehm, R. Fligg, P. Vohringer, B. Kirchner, Phys. Chem. Chem. Phys. 15, 6608 (2013)

    Article  Google Scholar 

  41. S. Nose, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  42. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  43. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  44. H. Folbert, V. Kleinschmidt, A. Kohlmeyer, Fourier-version, 2002–2005

  45. S. Gongalves, H. Bonadeo, Phys. Rev. B 46, 12019 (1992)

    Article  ADS  Google Scholar 

  46. M.P. Gaigeot, M. Martinez, R. Vuilleumier, Mol. Phys. 105, 2857 (2007)

    Article  ADS  Google Scholar 

  47. A. Cimas, T.D. Vaden, T.S.J.A. de Boer, L.C. Snoek, M.-P. Gaigeot, J. Chem. Theory Comput. 5, 1068 (2009)

    Article  Google Scholar 

  48. E. Suarez, N. Dıaz, J. Mendez, D. Suarez, J. Comput. Chem. 34, 2041 (2013)

    Article  Google Scholar 

  49. M. Ocana, V. Fornes, J.V. Garcia-Ramos, C.J. Serna, Phys. Chem. Miner. 14, 527 (1987)

    Article  ADS  Google Scholar 

  50. M.P. Gaigeot, Phys. Chem. Chem. Phys. 12, 3336 (2010)

    Article  Google Scholar 

  51. A. Jayaraman, D.L. Wood, G.R. Maines Sr., Phys. Rev. B. 35, 8316 (1987)

    Article  ADS  Google Scholar 

  52. P. Hermet, J. Phys. Chem. C 120, 126 (2016)

    Article  Google Scholar 

  53. J. Haines, O. Cambon, D.A. Keen, M.G. Tucker, M.T. Dove, Appl. Phys. Lett. 81, 2968 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani M. Krallafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sediki, H., Simon, P., Hadjadj, A. et al. Ab-initio molecular dynamics and vibrational Raman spectroscopy investigations of quartz polymorph at high temperature. Eur. Phys. J. B 90, 172 (2017). https://doi.org/10.1140/epjb/e2017-80176-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80176-6

Keywords

Navigation