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Abstract. We consider the response to uncorrelated noise and harmonic excitation of a birhythmic van der
Pol-type oscillator. This system, as opposed to the standard van der Pol oscillator, is characterized by two
stable orbits. The noisy oscillator can be analytically mapped, with the technique of stochastic averaging,
onto an ordinary bistable system with a bistable (quasi)potential. The birhythmic oscillator can also be
numerically characterized through the diagnostics of coherent resonance and the signal-to-noise-ratio. The
analysis shows the presence of noise-induced coherent states, influenced by the different time scales of the
oscillator.

1 Introduction

Self oscillatory systems exhibit spontaneous periodic oscil-
lations, i.e. a stable orbit in the phase space. More rarely,
one encounters birhythmicity, or the contemporary pres-
ence of two stable orbits (limit cycles) for the same set
of parameters, as in some biochemical systems [1] or cir-
cadian oscillations [2], cell populations [3,4], neuronal dy-
namics [5], protein dynamics [6]. To model the oscillations,
one of the first, and still nowadays prototypal system, is
the van der Pol oscillator [7], that has been employed for
biological modelling [8] and other oscillations [9–11]. Quite
naturally, van der Pol oscillators have been generalized
with a higher order polynomial dissipation (that entails
multiple stable attractors with different natural frequen-
cies) to be employed as a paradigm for birhythmicity, for
example in some enzymatic reactions [10,12–18], or en-
ergy harvesting [19]. Noise, that of course is present in
real processes, perturbs the periodicity of van der Pol os-
cillators. In the case of birhythmic systems, noise also
induces an hysteretic behavior: the displayed limit cy-
cle depends upon the initial conditions. The transition
from an attractor to another is essentially governed by
an Arrhenius-type law [20–22] and the effective energy
barrier that regulates the escapes depends upon the fluc-
tuation spectrum and the signal (or perturbation) shape.
Thus, a van der Pol-type birhythmic system shares the
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main features of bistable systems [10,23,24]: the presence
of two metastable states, an exponential dependence of
the lifetime upon the inverse noise intensity, and a mean
first passage time across an unstable separatrix. The sim-
ilarity can be ascribed to the possibility to reduce the
averaged system (averaged over the period of the self os-
cillations) to a standard bistable system governed by a
double well quasi-potential (or pseudopotential) [25,26].
This analysis could also take advantage of the nonequilib-
rium potential constructed on the basis of an extremum
principle [27–29]. In fact, it can be postulated that the
behavior of the escape times, or more accurately of the
mean first passage time through the separatrix between
the two attractors, exponentially depends upon a quantity
(the quasi-potential, or the effective energy barrier) and it
is inversely proportional to the noise intensity [12,18,30].
The quasi-potential approach has also been extended to
correlated noise case both driven [31] and undriven [32],
that also exhibits stochastic bifurcations [33]. We have
made theoretical estimations of the noise thresholds for
escape times in van der Pol-type birhythmic system.

We propose to add a sinusoidal drive to such effective
bistable potential, i.e. we consider a forced van der Pol
type birhythmic system [34] as in some biological systems
that are characterized also by a forcing term [35]. When
a periodic drive is added to a static, ordinary bistable
system characterized by a double well, it is known that
the random oscillations between the two (meta)stable so-
lutions induced by noise and the period of the external
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drive can co-operate, producing states that are, in some
statistical sense, coherent with the external drive. This is
the property exploited in Stochastic Resonance (SR) [36],
stochastic signal detection [37,38], and dynamical phase
transitions [39]. The interesting phenomenon of SR may
appear in a system subject to both random and periodic
force [40]. In particular, stochastic resonance is the term
used to describe systems in which the presence of input
or internal noise provides the optimal output of that sys-
tem [41,42]. In a nonlinear system, SR ordinarily occurs
under three conditions: the presence of a bistable nonlin-
ear system, an applied periodic signal, and the presence
of noise. Under these conditions, the response of the sys-
tem can be similar to the resonance behavior, which is
why it is called stochastic resonance. In the van der Pol
birhythmic case, the potential is not an actual potential,
but a quasi-potential that governs the rare escapes. More-
over, the system has several time scales: the periods of
the orbits, the period of the external drive, and the aver-
age escape time from the attractors, while in the ordinary
analysis of SR the first time scale (the period of the orbits)
is absent. It is therefore not obvious that SR can occur,
and this is the objective of our research: to investigate if a
birhythmic system, where the two states are periodic orbit
with an intrinsic time scale, can exhibit a (stochastic) res-
onance in the presence of noise, as the analogous ordinary
bistable systems. Also, we wish to verify if the reduction
of the model equation by means of the quasi-potential to a
bistable system can also describe the co-operation between
the external deterministic drive and the noise effects.

The paper is organized as follows. We first summarize
some known properties of van der Pol birhythmic oscilla-
tors: in Section 2 we briefly describe the physical model
of the periodically driven multi limit-cycle van der Pol
oscillator. Section 3 deals with the diagnostic of the co-
herence between noise and deterministic oscillations in the
stochastic birhythmic van der Pol system, to formalize the
main tools employed in this work. The original results be-
gin in Section 4, that deals with stochastic resonance-like
phenomenon on the birhythmic van der Pol system. In
this Section we numerically evaluate the tools employed
to quantify the degree of coherence (or anti-coherence).
In Section 5, we show that a quasi-potential can be ap-
proximately derived, also including the sinusoidal drive.
Moreover, we numerically show that the system actually
displays SR in the coherent detection mode, at least for
some set of parameters. The last section leads to the con-
clusions.

2 Model of a noisy driven birhythmic system

In this section we set the stage for the studies of the
van der Pol like birhythmic system that will be analyzed
through the paper. After the model equations have been
presented in Section 2.1, it will be shown that the system
can be approximately mapped onto a bistable potential
for the radius A of the orbits in Section 2.2.

2.1 The model of noisy driven birhythmic system

A stochastic version of a modified van der Pol system
that exhibits birhythmicity, is described by the following
Langevin equation [12,18,43]:

ẍ − μ(1 − x2 + αx4 − βx6)ẋ + x = Γ (t). (1)

Here overdots denote time derivative. The term Γ (t) rep-
resents an additive Gaussian white noise with amplitude
D [40,44]:

〈Γ (t)〉 = 0, 〈Γ (t), Γ (t′)〉 = 2Dδ(t − t′). (2)

The quantities α, β are positive parameters, μ is the
parameter of nonlinearity which is restricted to small
values, μ � 1. Adding an external deterministic drive,
equation (1) becomes:

ẍ − μ(1 − x2 + αx4 − βx6)ẋ + x = E0 sinωt + Γ (t), (3)

where E0 and ω are the amplitude and the frequency of
the periodic force, respectively, while the properties of the
stochastic term are governed by equation (2).

Equation (3) can be reduced to a nonlinear bistable
oscillator in a potential for E0 = 0 [12,14,15,17,18,43].
However, here we assume that the signal E0 sin ωt is small
enough (E0 � 1), that, in the absence of noise, it can-
not force the particle to move from one well to the other.
Moreover, we also assume that the periodic signal is slow
enough to be considered adiabatic, respect to the time
scale of the self excited oscillations (i.e. ω � 1).

The system is a nonlinear self-sustained oscillator
which possesses more than one stable limit-cycle solution
when Γ (t) = 0 [2,12,18], essential to describe some biolog-
ical processes. The system exhibits super-harmonic reso-
nance structure, and symmetry-breaking crisis and inter-
mittency. When employed to model biochemical systems
like enzymatic-substrate reactions, x in equation (1) is
the population of enzyme molecules in the excited polar
state [13,15]. The parameters α and β measure the degree
of tendency of the system to a ferroelectric instability, and
μ is a parameter that effectively refers to strength of non-
linear damping (we refer to [12,18] for more details).

2.2 Analytic considerations

The standard approach to a van der Pol type equations
is to approximate the periodic solutions of the free-noise
equation (1) with

x = A cosΩt. (4)

The amplitude A has been found to be independent of the
coefficient μ and implicitly given by the relation [18]

5β

64
A6 − α

8
A4 +

1
4
A2 − 1 = 0. (5)

The coefficient μ enters in the expression for the frequency
Ω, which is implicitly given by the relation

Ω = 1 + μ2ω2 + o(μ2), (6)
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where ω2 is a function of the amplitude A and of the pa-
rameters α and β [12,18]. Equation (5), depending on the
value of the parameters α and β, gives rise to one or three
positive real roots. Thus, for some parameters value, the
system exhibits three limit cycle solutions (two stable and
one unstable) [12,18,45,46], with different associated fre-
quencies, that is the essence of birhythmicity. The un-
stable limit cycle represents the separatrix between the
basins of attractions of the two stable limit cycles. The
shaded area in Figure 1 denotes the region of the parame-
ters α and β where birhythmicity occurs [45,46]. Assuming
that the noise intensity is small [18], in the quasiharmonic
regime the modified van der Pol equation (1) reduces to
the following effective equation that depends on a (quasi)-
potential U [25,26]:

dA

dt
= −dU(A)

dA
+

√
D̃ζ1(t), (7)

where D̃ = D/ω2 and the effective potential U(A) is given
by [31]

U(A) =
μ

128

(
5β

8
A8 − 4α

3
A6 + 4A4 − 32A2

)
− D̃

2
ln(A).

(8)
The barrier of the effective potential ΔU characterizes the
escapes from the attractors with limit-cycles A1 and A3.
In fact, a quasipotential is a Lyapunov function that sum-
marizes the low noise properties of the system with an
Arrhenius-like behavior, 〈T 〉 ∝ exp(ΔU/D) [12,18]. In a
bistable system, two barriers characterize the exit times
from the two stable states: ΔU1 and ΔU3 for the escape
from the orbit of radius A1 and A3, respectively. As an
example, in Tables 1 and 2 we report the energy barri-
ers [12,30] of the multi-limit-cycle associated to the fre-
quencies and amplitudes of the model for some values
of the physical parameters α and β. In the shaded re-
gion of the parameters plane (α, β) of Figure 1, where
two global minima appear, the potential U is symmetric
(Tab. 1, ΔU1 � ΔU3, the black line of Fig. 1) or asym-
metric (Tab. 2, ΔU1 � ΔU3 or ΔU1 � ΔU3, the light
gray region of Fig. 1) with respect the unstable amplitude
A2 [12,18].

To calculate the statistics of the exit time, i.e. the es-
cape time of the particle from a minimum of the potential,
we derive an evolution equation for the Probability Den-
sity Function (PDF) of the variable amplitude A(t). The
Fokker-Planck equation corresponding to the Langevin
equation (7) with δ correlated Gaussian noise sources ζ1(t)
reads [31,47]

∂P (A, t)
∂t

=
∂

∂A
[U ′P (A, t)] +

D̃

2
∂2P (A, t)

∂A2
. (9)

In equation (9), P (A, t) is the PDF of the stochastic pro-
cess of the limit cycle amplitude A(t). The stationary so-
lution P (A) = P (A, t → ∞) undergoes a transition from
a bimodal to a unimodal (or the opposite, from unimodal
to bimodal) distribution by increasing the noise intensity
D (see Figs. 5–7 in Ref. [43]). In the absence of addi-
tive noise, D = 0, the system is conned in one semi-axis

(0 < A < A2 or A2 < A, according to the initial con-
dition). Equation (7) gives an estimate for the change in
the energy U(A) over the period 2π/ω in the quasihar-
monic regime. The escape process is depicted in Figure 2
as a jump over an activation barrier ΔU1→3 (from the
leftmost minimum A1) and ΔU3→1 (from the rightmost
minimum A3) [12,18]. The characteristics height can be
controlled by the variation of the parameters α and β [30].
The noisy birhythmic van der Pol equation (1) can be
characterized through the distribution P (T ) of the escape
times (denoted by Ti) from the two wells of potential U .
The probability for the system to hop between the po-
tential wells is defined through noise dependent Kramers
rate [47,48], which is the inverse of the average escape
time 〈T 〉. The quantities 〈T1,3〉 [18,30] for small noise in-
tensity D < ΔUi are given by (here the primes refer to
differentiation respect to the radius A):

〈T1(1 → 3)〉 =

√
2π

U ′′(A1)|U ′′(A2)| exp
(

ΔU1→3

D̃

)
, (10)

that describes the transition of the system from attractor
with limit-cycle amplitude A1 (left side potential well) to
attractor with limit-cycle amplitude A3 (right side poten-
tial well). A similar equation holds for the reverse passage,
i.e.

〈T3(3 → 1)〉 =

√
2π

U ′′(A3)|U ′′(A2)| exp
(

ΔU3→1

D̃

)
. (11)

The quantities (10) and (11) measure the relative stabil-
ities pertaining to the attractors with limit cycle ampli-
tude A1 and A3 through the resident time given by the
relation [18,30]:

R1,3 =
T1,3

T1 + T3
. (12)

The characteristics of the stability properties through
equation (12) in a modified van der Pol oscillator (1) are
strongly influenced by both the nonlinear coefficients α, β
and the noise intensity D [30]. An escape is counted if the
amplitude of the system A is greater than the separatrix
amplitude A2 for left to right escape. Analogously, if the
amplitude is less than the separatrix one counts the re-
versal passage from right to left. In the absence of noise,
the system would remain confined to its initial state. In
the presence of noise, transitions eventually occur, and the
two-state output evasion is a random distributed sequence.
However, a birhythmic system with an intrinsic time scale
there is the possibility that the noise cooperates with the
internal time scales. The measure of the degree of cooper-
ation is the subject of the next section.

3 Diagnostics of coherent resonance
and stochastic resonance

To characterize the birhythmic system one can analyze the
dynamics of the radius A of the oscillations, as per equa-
tion (4). A principal question is: does the quasi-potential
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Fig. 1. Parameters domain for the existence of a single limit cycle (white area) and three limit cycles (shadowed area). The
black zone is the domain of asymmetric potential, whereas the grey area is the region of symmetric potential. The nonlinear
parameter reads μ = 0.001.

Table 1. Amplitudes, frequencies and energy barriers of the limit cycles for the symmetric potential. All data refer to the case
μ = 0.001.

Si = (α, β) Analytical amplitudes Numerical frequencies Energy barriers ΔU1,3

S1 = (0.0675, 0.0009)
A1 = 2.1730001
A2 = 6.3245003
A3 = 8.6760004

Ω1 = 1.0000003
Ω2 = unstable
Ω3 = 0.9999923

ΔU1 = 6.8055 × 10−3

ΔU3 = 6.8055 × 10−3

S2 = (0.12, 0.0032)
A1 = 2.4200001
A2 = 4.4720002
A3 = 5.8430003

Ω1 = 0.9999999
Ω2 = unstable
Ω3 = 0.9999923

ΔU1 = 6.25 × 10−4

ΔU3 = 6.25 × 10−4

S3 = (0.1476, 0.0053)
A1 = 2.6905001
A2 = 3.8525002
A3 = 4.7405002

Ω1 = 0.9999999
Ω2 = unstable
Ω3 = 0.9999986

ΔU1 = 8.671 × 10−5

ΔU3 = 8.767 × 10−5

S4 = (0.16, 0.00658)
A1 = 2.9520001
A2 = 3.5965002
A3 = 4.1535002

Ω1 = 0.9999998
Ω2 = unstable
Ω3 = 0.9999990

ΔU1 = 1.035 × 10−5

ΔU3 = 1.101 × 10−5

S5 = (0.1547, 0.006)
A1 = 2.8145001
A2 = 3.7085002
A3 = 4.4240002

Ω1 = 1.000
Ω2 = unstable
Ω3 = 0.9999990

ΔU1 = 3.384 × 10−5

ΔU3 = 3.368 × 10−5

S6 = (0.1635, 0.007)
A1 = 3.0925001
A2 = 3.5280002
A3 = 3.9190002

Ω1 = 1.000
Ω2 = unstable
Ω3 = 0.9999992

ΔU1 = 2.377 × 10−6

ΔU3 = 2.445 × 10−6

Table 2. Amplitudes, frequencies and energy barriers of the limit cycles for the asymmetric potential. All data refer to the case
μ = 0.001.

ASi = (α, β) Analytical amplitudes Numerical frequencies Energy barriers ΔU1,3

AS1 = (0.065, 0.0009)
A1 = 2.1640001
A2 = 7.0255003
A3 = 7.8425004

Ω1 = 1.000
Ω2 = unstable
Ω3 = 0.9999992

ΔU1 = 9.0101 × 10−3

ΔU3 = 0.2667 × 10−3

AS2 = (0.145, 0.005)
A1 = 2.6605001
A2 = 3.8305002
A3 = 4.9645002

Ω1 = 1.000
Ω2 = unstable
Ω3 = 0.9998368

ΔU1 = 0.982 × 10−4

ΔU3 = 2.0332 × 10−4

AS3 = (0.154, 0.006)
A1 = 2.7860001
A2 = 3.8820002
A3 = 4.2695002

Ω1 = 1.000
Ω2 = unstable
Ω3 = 0.9999990

ΔU1 = 5.192 × 10−5

ΔU3 = 0.5477 × 10−5

AS4 = (0.1638, 0.007)
A1 = 3.1870002
A2 = 3.3430002
A3 = 4.0125002

Ω1 = 1.000
Ω2 = unstable
Ω3 = 0.9999992

ΔU1 = 0.131 × 10−6

ΔU3 = 9.487 × 10−6
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Fig. 2. The quasi-potential energy of a bistable system and an illustration of the escape process. The minima are at A1 and A3

(black circle), the maximum at A2 (red circle); in the stochastic averaging reduction each point represents an orbit amplitude,
see equation (1), of frequency given by equations (5) and (6). A switching from A1 to A3 and vice versa over the energy barrier
ΔU1 (A1 → A3) and ΔU3 (A3 → A1) can occur under the influence of noise. In all panels μ = 0.001, the other parameters
are: (a1,2): α = 0.0675, β = 0.0009 and α = 0.1635, β = 0.007, corresponding to the symmetric case, Table 1, cases S1 and S6;
(b1,2): α = 0.0650, β = 0.0009 and α = 0.145, β = 0.005, corresponding to the asymmetric case, Table 2, cases AS1 and AS2.

approximation give a bona fide bistable potential? Put it
in other words, we ask if the system evolution has the same
features of the dynamics of a particle subject to an ordi-
nary bistable potential, and if the entrained oscillations
give rise to the same type of resonances expected in or-
dinary potentials. We thus summarize the most common
diagnostics of stochastic coherence and resonance. Coher-
ence Resonance (CR) refers to the appearance of coherent
oscillations in a dynamical system in the presence of noise.
In particular it can refer to the appearance of coherent be-
haviour at an optimal noise strength, i.e. to the emergence
of orderly behaviour in the system due to the noise pres-
ence (the FitzHugh – Nagumo model [49] probably being
the first prototype model for CR). We propose to extend
the same diagnostic used by Pikovski and Kurths [49] to
the stochastic birhythmic van der Pol model to detect
the occurrence of CR. Also SR is assessed in the liter-
ature with several quantities, such as the residence-time
distribution density of a particle in one of the potential
wells [37], the spectral power amplitude [38,50], the hys-
teresis loop area (HLA) [51] and the Signal-to-Noise Ratio
(SNR) [16], to name few. When adding noise any of the
above tools measures an improvement of the signal qual-
ity, one speculates that the noise has induced stochastic
resonance, as we shall discuss in the following.

3.1 Tools to quantify coherent resonance

To quantitatively characterize the regularity of a system
in the presence of noise, let us begin with the normalized
Auto-Correlation Function (ACF), namely:

C(τ) =
〈Ã(t)Ã(t − τ)〉

〈Ã2〉 , Ã = A − 〈A〉. (13)

Noise induced coherence can also be characterized by
a decay rate of the ACF, i.e. by a Correlation Time
(CT) [22,49], defined as

τcor =
1

Var(A(t))

+∞∫

0

C2(τ)dτ , (14)

where Var(A(t)) is the variance of the amplitude A(t).
Considering A(t) as a transmitted signal, the correla-

tion time is an indicator of the regularity or the coherence
of the signal. The highest value gives the best noise inten-
sity necessary for Coherence Resonance (CR) if, as noise
is increased, the CT reaches a maximum. The idea is to
compute different correlation times for different noise in-
tensities and find the optimal intensity of the noise Dc.
Another way to quantify CR is to compute τcor, to check
if there is a noise level above which the random term de-
stroys the coherence. In reference [49] it was also intro-
duced the analysis of the standard deviation of the escape
times as a noise-signal ratio, RET . Coherence resonance
is then quantified in terms of the parameter RET, named
Coefficient of Variation (CV):

RET =

√〈T 2〉 − 〈T 〉2
〈T 〉 , (15)

here 〈T 〉 is the mean, and 〈T 2〉 − 〈T 〉2 is the variance of
the ETs from one stable orbit to the other through the un-
stable orbit of amplitude A2. A perfectly ordered system,
with escapes occurring at a regular pace, entails RET = 0.
Thus, a minimum of RET also signals the presence of CR.
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The escape times can also be described by means of
an effective noise intensity defined as [52,53]:

Deff =
R2

ET

2〈T 〉 (16)

that, at variance with CV, should exhibit a maximum
when coherence is enhanced.

3.2 Tools to quantify stochastic resonance

The measures introduced so far characterize the intrinsic
order of the escape times. In some circumstances, when
the system is investigated as a detector, it is interesting
to compare how the response of the system is influenced
by a periodic (sinusoidal) drive [37,38]. In these cases, one
wants to measure the response of the system in the pres-
ence of the input E0 sin ωt compared to the case when the
system is solely subject to a random term, that is the Sig-
nal to Noise-Ratio (SNR) [54–56]. To characterize SR one
can numerically calculate SNR using the mean square dis-
placement in the presence of a weak signal and the mean
square displacement induced by noise. To do so, one de-
fines the Root Mean Square (RMS) displacement:

RMS =
∫

A(t)A(t − t′)dt′ (17)

and then SNR can then be defined as the ratio of the RMS
in the presence of a mixture of noise and a signal with the
case of pure noise:

SNR =
RMS(E 
= 0, D 
= 0)

RMS(D 
= 0)
. (18)

SR appears to be counterintuitive, inasmuch it seems to
imply that the signal quality does not deteriorate as the
random noise is increased. In fact, for nonlinear systems
with an input signal, only in special circumstances increas-
ing the random noise can actually improve the detection
of the corrupted signal [42].

4 Stochastic like-resonance of birhythmic van
der Pol systems

In this section, we discuss the application of the concepts
illustrated in Section 3 to the birhythmic van der Pol
model discussed in Section 2.1. The purpose is to investi-
gate the effect of noise on the driven birhythmic system
governed by equation (1). The two-dimensional system is
reduced to a one-dimensional system through the instan-
taneous amplitude

A ≡
√

x2(t) + ẋ2(t), (19)

that is the counterpart of the approximation (4).
Figures 3a and 3b display the ACF, C(τ) as per equa-

tion (13), for six different values of noise amplitude and

for two different sets of parameters α and β, when the
quasi-potential is symmetric or asymmetric, respectively
(see Tabs. 1 and 2). In these figures the drive term is ab-
sent, E0 = 0, equation (1).

For the set (a) the autocorrelation increases at inter-
mediate values of noise, namely D � 10−4, see Figure 3a3.
Similarly, for the set (b), in Figure 3b2 on observes an
increase at D � 5 × 10−5. It is thus noticeable that a
resonance occurs also when E0 = 0 in equation (1), for
the absence of an obvious periodic drive. However, the
presence of two periodic attractors clearly gives the possi-
bility of the noise induced escapes and synchronization
with the deterministic period proper of the attractors.
It is therefore decisive to compare the noise intensity at
which a resonance occurs with the time-scale given by the
quasi-potential, as in equation (10). For the noise inten-
sity of Figure 3a2, D = 10−4, equation (10) with the pa-
rameter values of Table 1 gives an escape time of about
〈T (1 → 3)〉 ≈ 104. One can conclude that the dominat-
ing time scale is given by the activation energy, as derived
from the quasipotential (8), and not by the period of the
van der Pol oscillations (that is ≈2π, see Tabs. 1 and 2).

Also the CT, given by equation (14), can be used as
a measure of the coherence [49]. If noise can cooperate
with the deterministic oscillations, we expect that τcor is
maximized at non-zero noise intensity. The dependence
of this quantity on the noise amplitude is presented in
Figure 4. At variance with reference [49], the CT has a
clear minimum at the critical noise amplitude. Panel (a)
refers to the symmetrical potential, while panel (b) refers
to the asymmetric case. The presence of a minimum is
a clear signature of anti-coherence resonance [57]. The
minimum value τcor,min measures the strength of the anti-
correlation between the residence time in the two stable
states. At the minimum the critical noise amplitude Dc

reads, for the panel (a) Dc = 1.77, while in panel (b) it
reads Dc = 2.07. An estimate of the escape time through
equation (10) is only valid for vanishing noise [25,26], so
it cannot be used for D ≈ 1. However, numerical simula-
tions of the full equation (1) give an escape time of about
T ≈ 10, i.e. it matches the oscillation period of the attrac-
tors. We conclude that CT (measured through τcor), is
most sensitive to periodic oscillations underlying the van
der Pol birhythmic system, oscillations that are neglected
by the stochastic averaging. We also conclude that the
ACF (C(τ) in Fig. 3) and the CT (τcor in Fig. 4) are sen-
sitive to different time scales contained in the system.

In the analysis of the ET it is tempting to employ the
oscillation frequencies to have an estimate of the deter-
ministic oscillation periods (the ratio is that in the ac-
tual system, at variance with the reduced quasi-potential,
something oscillates at the frequency Ω). Using the ap-
proximated relationship between the external drive fre-
quency and the escape time for time scale matching
SR [37]

〈T 〉 =
π

Ω
. (20)

We therefore seek for SR at noise levels where the average
escape is the inverse of the van der Pol oscillation period.
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Fig. 3. The autocorrelation function C(τ ) for different noise amplitudes, see equation (13). The set (ai) (top panels) corresponds
to the symmetric case, S5, see Table 1, with α = 0.1547, β = 0.006, while the set (bi) (bottom panels) corresponds to the
asymmetric case, AS3, see Table 2, with α = 0.154, β = 0.006. The subscripts refer to the noise intensity: (a,b)1: D = 1× 10−5,
(a,b)2: D = 5 × 10−5, (a,b)3: D = 1 × 10−4, (a,b)4: D = 2.5 × 10−4, (a,b)5: D = 5 × 10−4, and (a,b)6: D = 1 × 10−3. In all
panels we have set the parameter μ = 0.001, E0 = 0.

The normalized fluctuations of the ETs distribution,
equation (15), has been employed to quantity the effect
of noise on the system (3) in Figures 5a1−4. The CV
changes of several orders of magnitude, thus indicating
sharp variations of the degree of coherence in response to
noise changes. The strongly nonlinear behaviour with evi-
dent peaks (or dips) at special values of the noise intensity
D (see Tabs. 3 and 4) for both the passages from the inner
orbit to the outer (RET1) and from the outer to the in-
ner orbit (RET1). For both the symmetric quasi-potential,
Figures 5a1−2 and the asymmetric quasi-potential, Fig-
ures 5a3−4, it appears that the escapes become suddenly

very disordered at D � 2.971, 5.942, 16.83, and 21.79. It is
evident that at these noise values the noise can cooperate
with the intrinsic oscillations of the van der Pol system,
giving rise to a significant reduction of the variance of the
ET from the inner orbit, and conversely to greatly increase
the disorder in the escapes from the other well.

Tables 3 and 4 provide the values D at the peaks
(dips), and the corresponding escape time 〈T 〉, this shows
the decreasing of 〈T1〉 and the increasing of 〈T3〉.

The phenomenon is confirmed by the behavior of the
effective diffusion Deff , given by equation (16), that can
be considered as an alternative measure of SR. As cit
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Table 3. Pronounced values of the averaged escape times
〈T1(A1 → A3)〉 and 〈T3(A3 → A1)〉 for the case of symme-
try potential.

D 〈T1(A1 −→ A3)〉 〈T3(A3 −→ A1)〉
2.971 0.311202344163790 1.93331429910557

5.942 9.442004022060120 × 10−2 0.933103116355772

16.83 6.564115778189560 × 10−2 1.81793686513413

21.79 6.156881219055681 × 10−2 2.50400902740351

Table 4. Pronounced values of the averaged escape times
〈T1(A1 → A3)〉 and 〈T3(A3 → A1)〉 for the case of asymmetry
potential.

D 〈T1(A1 −→ A3)〉 〈T3(A3 −→ A1)〉
2.971 0.315577448605940 1.82583134563407

5.942 0.215271280189222 1.60995055543023

16.83 0.127857473503098 1.69808016157355

21.79 0.113841745789081 1.83781953721047

is evident in Figures 5b1−4, the effective diffusion closely
follows the escape times behavior.

To further investigate the appearance of different time-
scales in signal enhancement we include the effects of the
drive term E0 at frequency ω in the next section.

5 Effects of a periodic signal
on the birhythmic system

In this section we extend the analytic treatment of the
noisy system (1) to the case of an applied periodic
drive (3). To do so, we restrict the frequency of the drive
to be close to the natural frequency of the van der Pol
oscillator.

5.1 Analytical treatment of the stochastic driven
van der Pol birhythmic system

We consider the driven modified van der Pol system (3),
where we assume that the deterministic source can os-
cillate harmonically close to the natural frequency, i.e.
ω = Ω + ν, with ν � 1. To analyse equation (3), we
introduce two variables y1(t), y2(t) related to the (x, ẋ)
phase-space, that rotate at the frequency of the drive ω:

y1 = x cosωt − ẋ

ω
sin ωt, (21a)

y2 = x sin ωt +
ẋ

ω
cosωt. (21b)

We use the Krylov-Bogoliubov averaging method [58], as
in reference [59], with the assumption that friction param-
eter μ is not too large (μ � 1), to obtain the following
basic (averaged) equations:

ẏ1 = P1(y1, y2) − ξ1(t), (22a)
ẏ2 = P2(y1, y2) + ξ2(t), (22b)

where

P1(y1, y2) = νy2 +
μy1

2

×
[
1 − 1

4
(y2

1 + y2
2) +

α

8
(y2

1 + y2
2)2 − 5β

64
(y2

1 + y2
2)

3

]
− μE0

2ω
,

P2(y1, y2) = −νy1 +
μy2

2

×
[
1 − 1

4
(y2

1 + y2
2) +

α

8
(y2

1 + y2
2)2 − 5β

64
(y2

1 + y2
2)3

]
.

Here, ν ∼ (Ω2 − ω2)/(2ω) and the excitations ξ1(t)
and ξ2(t) are two independent normalized Gaussian white
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Fig. 5. (ai) Coefficient of variation RET and (bi) effective diffusion constant Deff versus the noise amplitude D for the
undriven birhythmic van der Pol system. Both quantities clearly exhibit a strong change for special values of the noise, D �
2.971, 5.942, 16.83, and 21.79. The subscripts 1 and 3 refer the escapes from the inner (A1) or the outer (A3) orbits, respectively.
The top panels, (a1,2) and (b1,2) correspond to α = 0.1547, β = 0.006, the symmetric quasi-potential case. The lower panels
(a3,4) and (b3,4) correspond to α = 0.154, β = 0.006, the asymmetric potential case. In all panels we have set the parameter
μ = 0.001, E0 = 0.

noises with intensity D̃ = D
ω2 . The associated PDFs of y1

and y2 are
∂p

∂t
= −∂J1

∂y1
− ∂J2

∂y2
, (23)

where

J1 = P1(y1, y2)p+
D̃

2
∂p

∂y1
, and J2 = P2(y1, y2)p− D̃

2
∂p

∂y2
.

Here, J1 and J2 are the probability currents or stationary
state probability currents, for the Fokker Planck equa-
tion (22), which are not in general constants. However,
for certain conditions on P1 and P2 [22], in the steady
state J1 and J2 vanish. Under these conditions, J1 and J2

can be derived from a potential V , as

P1 = − ∂V

∂y1
, P2 = − ∂V

∂y2
. (24)

The potential V exists if the following potential condition
holds [60]:

∂P1

∂y2
− ∂P2

∂y1
= 0. (25)

For our problem one finds

∂P1

∂y2
− ∂P2

∂y1
= 2Δ, (26)

where Δ ∼ ν. At this stage, two cases can be considered:
case Δ = 0 and case Δ 
= 0.

The optimal situation is the case Δ = 0, in which
the harmonic forcing frequency is locked to the frequency
of the multi-limit cycle oscillation, i.e. ω ∼ Ω. equa-
tion (22) represents an overdamped version of two coupled
anharmonic oscillator [61,62]. In the absence of detuning
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Page 10 of 16 Eur. Phys. J. B (2017) 90: 153

Table 5. Characteristics limit of driving amplitude for bista-
bility.

(α, β) Phase Limit of E0

α = 0.145, β = 0.005 φ = −π
2

E0 < 0.2564

α = 0.145, β = 0.005 φ = π
2

E0 < 0.5764

α = 0.154, β = 0.006 φ = −π
2

E0 < 0.1484

α = 0.154, β = 0.006 φ = π
2

E0 < 0.0429

(Δ = 0) and noise terms the potential of the two coupled
anharmonic oscillators is

V (y1, y2) = −μ

(
1
4
(y2

1 + y2
2) − 1

32
(y2

1 + y2
2)2

+
α

96
(y2

1 + y2
2)

3 − 5β

1024
(y2

1 + y2
2)4 − E0

2ω
y1

)
. (27)

Next we transform the potential (27), into the amplitude
and phase variables setting y1 = A sin(φ), y2 = A cos(φ).
This leads to:

V (A, φ) = −μ

(
1
4
A2 − 1

32
A4 +

α

96
A6

− 5β

1024
A8 − E0

2ω
A sin(φ)

)
. (28)

In the new variables (A, φ), the parameters μ, α and β are
fixed as in Figure 2. For this choice, depending on exci-
tation force amplitude E0, the potential has two or four
minima and is a two or a four well potential. Stationary
oscillations under deterministic excitation are obtained
setting:

⎧
⎪⎨

⎪⎩

∂V

∂φ
= 0

∂V

∂a
= 0

⇔

⎧
⎪⎨

⎪⎩

cos(φ) = 0,

5βA7 − 8αA5 + 16A3 − 64A

+ 64E0
ω sin(φ) = 0,

(29)

for given values of α and β. The amplitudes are plotted in
Figure 6 as a function of the excitation E0, for φ (φ = −π

2
and φ = π

2 ), at different frequencies of the external drive.
It is observed that the bistabilities zone widens with the
increase of E0. In Figure 6, the black lines are the stable
amplitude combined with both phases, for φ = −π/2 in
Figure 6b1, and φ = π/2 (in Fig. 6b2). The gray curves
represent the unstable amplitude. The limit of the ampli-
tude excitation to permit bistability are summarized in
Table 5 for the frequency of excitation ω = 1.

Below the critical value of E0 of Table 5 the following
equations for A and φ characterize the escapes:

Ȧ = − μ

128
(5βA6 − 8αA4 + 16A2 − 64)a

− μE0

2ω
sin(φ) +

D̃

2a
− ξ1(t), (30a)

φ̇ = Δ − μE0

2Aω
cos(φ) + ξ2(t). (30b)

The stability analysis of equations (30a) and the of the
related potential V given by equation (28) show that only

the points (Ai, φ = −π/2) are stable. In many noisy sys-
tems the method leads to a one-dimensional approxima-
tion to the response amplitude that significantly simplifies
the solution procedure. However, the simplified equation
is coupled with the phase equation and of solution of
the PDF of amplitude and phase is not possible in gen-
eral. Thus, to characterize the escape time, we consider
equation (30a) and replace the terms containing φ by the
corresponding deterministic values. This amounts to set
φ = −π/2 in equation (30a), that leads to

Ȧ = − μ

128
(5βA6−8αA4+16A2−64)A+

μE0

2ω
+

D̃

2A
−ξ1(t).

(31)
Therefore, the equation for the amplitude A is indepen-
dent of φ. The deterministic potential corresponding to
equation (31) reads

V (A) = −μ

(
1
4
A2 − 1

32
A4 +

α

96
A6 − 5β

1024
A8 +

E0

2ω
A

)
.

(32)
It has two stable states and an unstable state; under the
condition resumed in Table 5, namely, it is bistable. The
reduced deterministic potential V (A), as a function of
amplitude a for different values of the amplitude E0, is
plotted in Figure 7. One can see that for the outer os-
cillation amplitude the potential well deepens, the inner
potential well becomes shallow as E0 increases. Through
equation (32) one can derive the behavior of the poten-
tial barriers ΔV1 and ΔV3, that are shown in Figure 8 as
a function of the periodic signal intensity E0. It is evi-
dent that increasing of E0 above some limit (reported in
Tab. 5), the leftmost potential well, associated to the in-
ner orbit, disappears. Asymmetric forms are still observed
according to the value of the control parameters E0. This
gives rise to the possible switching over the potential well
in the presence of noisy excitation. To reveal how the pe-
riodic drive affect the escape times process and their dis-
tribution of the escape times on right potential well and
the left potential well of the system equation (31).

The Fokker-Planck equation corresponding to the re-
duced equation (31) can be written as

∂p

∂t
=

∂

∂A
[V ′

effp] +
D̃

2
∂2p

∂A2
. (33)

Hence, the stationary solution of equation (33) is

Pst(a) = Nexp

(
−Veff(A)

2D̃

)
, (34)

with N being a normalization constant, and the effective
potential Veff(a) is given by

Veff(A) = −μ

(
1
4
A2 − 1

32
A4 +

α

96
A6 − 5β

1024
A8 +

E0

2ω
A

)

− D̃

2
ln(A). (35)

To analyze the effect of the deterministic excitation on the
escape rates (T1,3) of right limit-cycle A3 and the left sta-
ble limit-cycle A1, we consider again the mean exit time
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of the system from different well of the effective potential
Veff(A). When D̃ is small in comparison with the height of
the energy barrier [12,18], i.e., D̃ <| Veff(A2)−Veff(A1,3) |.
Through equation (35) one can derive the behavior of the
effective potential barriers ΔVeffi(a) [12,18]. In fact, if one
approximates the full birhythmic behavior with an effec-
tive Brownian motion of the particle in a double well po-
tential, the effective potential barriers can be considered
as an energy needed to escape from an orbit to the other.
The analytic predictions of the energies ΔVeff1 and ΔVeff3

as a function of noise intensity D for different determinis-
tic intensities E0 are shown in Figure 9.

As in reference [43], due to the shape of Figure 7, the
probability distribution is in general very asymmetric; for
fixed parameters α, β the probability distribution func-
tion p(A) can be localized around a single orbit. For the
set of parameters (α, β) in the gray area (the case of an
asymmetrical potential) in Figure 1, one notes that a sud-

den qualitative change of p(a) in the presence of noise, is
denoted as P-bifurcations [43]. This can be seen in Fig-
ure 10 that the distribution with two peaks evolves into
one peaks as the noise intensity D changes gradually.

5.2 Numerical investigation of the response
to a sinusoidal drive

In stochastic resonance, besides the analysis of escape
times as indicators of coherence, it is important to re-
construct at least the qualitative properties of the system
as a detector. In this framework, one interprets the deter-
ministic term in equation (18) as a signal to be revealed
analysing the response of the van der Pol oscillating sys-
tem, and noise is the disturbing term that hinders the
detection. A standard tool to characterize the signal en-
hancement due to noise is the SNR, as per equation (18).
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To obtain an estimate of such enhancement, we have sim-
ulated the van der Pol system at a fixed the value of exter-
nal drive frequency, ω = 0.2 – a value where the analytic
approximation of Section 5.1 is not valid, for it assumes
ω � Ω. Averaging over 200 realizations for as long as
106 normalized time units and in the so-called coherent
detection [41,42], i.e. the case where the initial state of
the detector (in our case, the vdP oscillator) is fixed and
influences the signal detection. The investigation of the in-
terplay between noise and the coherent driving input gives
rise to the phenomenon of stochastic resonance.

Figure 11 shows the SNR as a function of D in an area
of approximately symmetric potential for E0 = 0.1, ω =
0.2, and μ = 0.001 with different initial condition (black:
IC is around the inner orbit A1; gray curve: IC is around
the outer orbit A3). In Figure 11a, the SNR shows no peak
for both ICs. It is evident that SR does not occur with the
corresponding set of parameters α = 0.0675, β = 0.0009.
Figures 11b–11f display the response of the system when it
appears a resonant-like behavior as a function of the noise
level, that is a signature of SR. A stochastic resonance-
like phenomenon is only observed when the system starts
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on the inner orbit with a low value of the parameter of
nonlinearity, μ.

In the area where an asymmetric potential is expected
(see Fig. 1), the analysis shows some analogous features, as
displayed in Figure 12 at E0 = 0.1, ω = 0.2 and μ = 0.001.
In Figure 12a there is no SR-like phenomenon, while in
Figures 12b–12d the SNR as a function of D exhibits a
maximum for an optimal noise intensity, a characteristic
feature of SR phenomena. It is clear that no SR occurs
when the system starts around the outer orbit A3.

6 Conclusion

We have investigated the effect of noise added to a forced
birhythmic van der Pol-like system that describes some
applications as, e.g., enzymatic reactions, sleep-awake cy-
cles, and energy harvesting. The interest also arises from
the interplay between the time scales: the two oscilla-
tions periods (that are the essence of birhythmicity), the
drive frequency (that is externally controlled), and the
noise induced average escape time (that is determined by
the quasi-potential). Moreover, the system is also analyt-
ically convenient. In fact, using the method of stochas-
tic averaging, one can reduce the modified van der Pol
equation (3) to an asymmetric bistable system driven by
Gaussian white noise.

In the stochastic averaging approximation the two or-
bits correspond to two fix points, and the stability (in
the low noise limit) can be estimated through the quasi-
potential, also in the presence of a forcing term at a
frequency close to the frequency of self-oscillations. The
numerical analysis reveals several features of the driven
birhythmic system:

(a) The ACF shows that the dominating time scale is dic-
tated by the activation energy (as derived by the quasi-

potential) and not by the spontaneous oscillations pe-
riods, Figure 3.

(b) There is a special value for the noise Dc at which
the ACF reaches a minimum, a signature of anti-
correlation. The Dc values are slightly different for the
inner and outer orbit, Figure 4.

(c) The escape times distribution (as measured by the
coefficient of variation CV or equivalently by the ef-
fective diffusion constant Deff) depends upon the self
generated oscillations of the birhythmic van der Pol,
Figure 5.

One concludes that the different tools to characterize the
system are sensitive to different phenomena, ACF to (rare)
escapes from the stable orbits, the escape times to the os-
cillations of the attractors. Thus, the escapes from the
quasi-potential behave as expected for an ordinary poten-
tial, but they also keep memory of the fact that the system
is in fact oscillating (the stable point in the averaged sys-
tem represents an orbit) and can (stochastically) resonate
also at the orbit frequency.

The analytical treatment (by means of stochastic av-
eraging) allows to estimate the behavior of the quasi-
potential (or the effective activation energies, V in Fig. 7)
as a function of the drive amplitude (Fig. 8) and of the
white noise intensity (Fig. 9). The analysis reveals that
the drive amplitude can either increase or decrease the
stability of the orbits. Instead, the noise amplitude always
tends to stabilize the outer orbit (i.e., to increase the ef-
fective activation energy) and to weaken the stability of
the inner orbit (i.e., to decrease the effective activation
energy). This type of analysis can only be performed for a
drive frequency that is close to the oscillation frequency.
As the stochastic averaging is only applicable when the
drive frequency is equal to the oscillator frequency, we
have employed numerical simulations to evaluate the SNR
for slow frequency (respect to the natural frequency of the
van der Pol oscillator), in the so called coherent detection

http://www.epj.org
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approach, that keeps memory of the initial conditions. The
SNR associated to a small periodic drive shows markedly
different properties if the initial conditions are selected on
the inner or outer orbit: depending on the parameter set,
stochastic resonance is observed either for the inner or
for the outer orbits. This is compatible with a picture of
bistable oscillations between the two stable orbits. How-
ever, it remains to be established if the incoherent detec-
tion case, where the average washes out the influence of
the initial conditions, also exhibits stochastic resonance.
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18. A. Chéagé Chamgoué, R. Yamapi, P. Woafo, Eur. Phys. J.
Plus 127, 59 (2012)

19. D. Biswas, T. Banerjee, J. Kurths, Phys. Rev. E 94, 042226
(2016)

20. H.A. Kramers, Physica 7, 284 (1940)

21. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62,
251 (1990)

22. R.L. Stratonovich, Selected Problems of Fluctuation
Theory in Radiotechnics (Sov. Radio, Moscow 1961) (in
Russian), Selected Topics in the Theory of Random Noise
(Gordon and Breach, New York, 1963, 1967), Vols. 1, 2

23. R.F. Grote, J.T. Hynes, J. Chem. Phys. 73, 2715 (1980)

24. A. Longtin, A. Bulsara, D. Pierson, F. Moss, Biol. Cybern.
70, 569 (1994)

25. M.I. Dykman, M.A. Krigovlaz, Sov. Phys. JETP 50, 30
(1979)

26. R. Graham, T. Tél, Phys. Rev. A 31, 1109 (1985)

27. R. Graham, in Instabilities and Nonequilibrium Structures,
edited by E. Tirapegui, D. Villarroel (Reidel, Dordrecht,
1987), pp. 271–290, 435

28. H.S. Wio, R.R. Deza, J.M. Lopez, An Introduction
to Stochastic Processes and Nonequilibrium Statistical
Physics, revised edn. (World Scientific, Singapore, 2012)

29. R.L. Kautz, J. Appl. Phys. 76, 5538 (1994)

30. R. Yamapi, G. Filatrella, M.A. Aziz-Alaoui, H.A. Cerdeira,
Chaos 22, 043114 (2012)

31. R. Mbakob Yonkeu, R. Yamapi, G. Filatrella, C.
Tchawoua, Physica A 466, 552 (2017)

32. R. Mbakob Yonkeu, R. Yamapi, G. Filatrella, C.
Tchawoua, Nonlinear Dyn. 84, 627 (2016)

33. R. Mbakob Yonkeu, R. Yamapi, G. Filatrella, C.
Tchawoua, Commun. Nonlinear Sci. Numer. Simul. 33, 70
(2016)

34. S. Hartzell, M.S. Bartlett, L. Virgin, A. Porporato, J.
Theor. Biol. 368, 83 (2015)

35. A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo, E.
Gudowska-Nowak, Eur. Phys. J. B 65, 435 (2008)

36. R. Yang, A. Song, Int. J. Mod. Phys. B 22, 5365 (2008)

37. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev.
Mod. Phys. 70, 223, (1998)

38. Th. Wellens, V. Shatokhin, A. Buchleitner, Rep. Prog.
Phys. 67, 45 (2004)

39. C. Stambaugh, H.B. Chan, Phys. Rev. B 73, 172 (2006)

40. M. Gitterman, The Noisy Oscillator: The First Hundred
Years, From Einstein Until Now (World Scientific,
Singapore, 2005)

41. P. Addesso, G. Filatrella, V. Pierro, Phys. Rev. E 85,
016708 (2012)

42. P. Addesso, V. Pierro, G. Filatrella, Commun. Nonlinear
Sci. Numer. Simulat. 30, 15 (2016)

http://www.epj.org
http://creativecommons.org/licenses/by/4.0


Page 16 of 16 Eur. Phys. J. B (2017) 90: 153
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