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Abstract. We investigate the role of inter-orbital fluctuations in the low energy physics of a quasi-1D
material – lithium molybdenum purple bronze (LMO). It is an exceptional material that may provide us a
long sought realization of a Tomonaga-Luttinger liquid (TLL) physics, but its behaviour at temperatures
of the order of T ∗ ≈ 30 K remains puzzling despite numerous efforts. Here we make a conjecture that
the physics around T ∗ is dominated by multi-orbital excitations. Their properties can be captured using
an excitonic picture. Using this relatively simple model we compute fermionic Green’s function in the
presence of excitons. We find that the spectral function is broadened with a Gaussian and its temperature
dependence acquires an extra T 1 factor. Both effects are in perfect agreement with experimental findings.
We also compute the resistivity for temperatures above and below critical temperature T0. We explain
an upturn of the resistivity at 28 K and interpret the suppression of this extra component of resistivity
when a magnetic field is applied along the conducting axis. Furthermore, in the framework of our model,
we qualitatively discuss and consistently explain other experimentally detected peculiarities of purple
bronze: the breaking of Wiedmann-Franz law and the magnetochromatic behaviour. Our model consistently
explains all these.

1 Introduction

A search for materials with one dimensional charac-
ter has been always an exciting endeavour fuelled by a
promise of observing a highly correlated electron liquid
with fully predicable properties, the Tomonaga-Luttinger
liquid (TLL). On the other hand it has been unreward-
ing because, either a dimensional cross-over or an order-
ing driven by the Peierls transition, blocked our way to
the exotic physics. Purple bronze, Li0.9Mo6O17 (LMO),
has been always considered a great promise [1]: its excep-
tionally anisotropic band structure and negligible effects
of phonons indeed seemed to be a perfect starting point.
Indeed extremely anisotropic transport coefficients [2–5]
down to temperatures of order 10 K and remarkable sig-
natures of TLL spectral function [6–9] were clearly [10–12]
detected in experiments. However at the same time the
promise has become a challenge, because the physics
around a presumed dimensional cross-over around T ∗ ≈
30 K turns out to be very unusual. There is a mysteri-
ous resistivity upturn [2,5] plausibly indicating a transi-
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tion into insulating state, but with very weak signatures of
phase transition [3] and absolutely no effect on the lattice
(except anomalous negative volumetric expansion con-
stant [13]). All these properties are susceptible to magnetic
field [5] while, at the same time, magnetic susceptibility
is well below the Pauli limit and is dominated by para-
magnetic fluctuations [3,14]. Moreover, most recent mea-
surements showed intriguing deviations from a standard
1D physics already at higher temperatures T ∼ 150 K:
anomalous ARPES scaling [15] and broadening [16] below
energy scales of order 150 K and breaking of Wiedman-
Franz law at the same energy scales [17] (again with no
influence of phonons).

On the theory side it has been established that the
system can be considered as 1D two leg ladder [18–20]
very close to the (quarter-filled) Mott transition [21,22].
Hence, from a very fundamental perspective, we face not
only the problem of dimensional cross-over [23–25] but
also a weakly doped (quarter-filled) Mott-insulator. This
makes the problem even more challenging, but also much
more exciting, since the many-body excitations (and spec-
tral gaps) in the vicinity of the Mott state are currently
hotly debated issues [26–29]. In the particular context
of purple bronze our task is to construct a many body
mechanism, consistently on the top of the well established
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1D description, which could explain experimental phe-
nomenology observed at energy scales from 200 K down
to the possible dimensional crossover at T ∗ ≈ 30 K. A
crucial hint comes from a bit forgotten experimental work
reference [30], where a magneto-chromatic effect was ob-
served. The characteristic energy scale detected in this
work, associated with a characteristic magnetic field when
the LMO’s color changes, falls quite close to T ∗.

Authors’ of reference [30] concluded that this must be
manifestation of some electronic re-organization within
the d-manifold, an effect inaccessible in a purely 1D
model, where only one, the dxy-orbital, was taken into
account [21]. Extending the model by including an orbital
degree of freedom makes a lot of sense also if one real-
izes [31] that in LMO any perpendicular hopping must
be transferred through d-orbitals other than dxy, so any
out-of-1D processes, any dimensional cross-over, must in-
volve excitations involving orbital-swap processes. More-
over, from the DFT studies [19] it is known that there is
a lot of entropy available in structural fluctuations if we
allow the system to explore the other d-orbitals.

The outline of this paper is as follows. In Section 2 we
first introduce in detail a possibility for excitonic states
and their interactions in LMO, then we write down the
hamiltonian of the problem and explain physics covered
by each of its constituents. To be precise, in our construc-
tion we start with a robust TLL, as found in reference [21],
and then introduce a new “UV” cut-off at energy scale
that is slightly larger than the spin-orbit coupling. The
orbital-fluctuation effects enter into problem (as e.g. mod-
ified scattering amplitudes) at this energy which justifies
the choice of the UV cut-off. Based on this input, in Sec-
tion 3 we compute observable quantities: the fermionic
spectral function and electrical resistivity. This serves to
asses the validity of our model. Then in Section 4 we dis-
cuss further experimental hallmarks of a presence of the
excitonic physics.

2 Model

2.1 Inter-orbital excitations

Crystal structure of LMO is known [32,33] to consist out
of 2D slabs parallel to the b-c plane. Within the slabs
pairs of quasi-1D zig-zag Mo chains, which run along the
b-axis, can be distinguished (see Fig. 1). Each Mo atom is
located inside an octahedron built out of oxygen atoms, so
due to a strong crystal field split the low energy manifold
is given by t2g orbitals [18,19,31]. The eg orbitals are ∼eV
away from the Fermi energy EF and are projected out.
Hence the t2g states can be treated as a triplet with an
effective L̃ = 1, where dxz, dyz are linear combinations of
L̃z = ±1. Since the split between the bare levels, favouring
L̃z = 0, is tiny [19] (∼10 meV) then the proper many-body
description of LMO, the base for all considerations of this
material, has to be given in terms of the following multi-

Fig. 1. Schematic illustration of plausible wavefunction of the
small exciton drawn on the top of b-c plane cross-section of
the LMO crystal structure. Only these Mo sites that host t2g

electronic density are indicated. They are numbered accord-
ing to notation in reference [31]. Pairs of zig-zag chains are
along the b-axis. Exciton with an average radius rex is indi-
cated by a purple ellipse. Orange and blue ellipses show hole
in the bonding and electron in the anti-bonding bands respec-
tively. Dashed purple lines shows hopping paths in agreement
with reference [22].

orbital hamiltonian:

Hbs =
∑

σ̄,α,k

εσ̄,α(k)c†σ̄α(k)cσ̄α(k)

+ U
∑

σ̄α,r

c†σ̄α(r)c†−σ̄α(r)c−σ̄α(r)cσ̄α(r)

+ (U − 2JH)
∑

σ̄α,β,r

c†σ̄α(r)c†σ̄β(r)cσ̄β(r)cσ̄α(r)

+ (U − JH)
∑

σ̄α,β,r

c†−σ̄α(r)c†σ̄β(r)cσ̄β(r)c−σ̄α(r)

+ JH

∑

σ̄α,β,r

c†−σ̄α(r)c†σ̄β(r)c−σ̄β(r)cσ̄α(r)

+
∑

σ̄αβγ,r,r′
V αβ

γδ (r−r′) c†ασ̄(r)c†βσ̄(r′) cγσ̄((r′)) cδσ̄(r)

(1)

where c†σ̄α(k) is a creation operator of a fermion with
spin σ̄, in the band α = dxy, dxz, dyz with a momentum
k and energy εσ̄,α(k), c†σ̄α(r) is Fourier transform to real
space. The last three terms are the strong correlations in
the form of Hubbard term between electrons on the same
orbital (U + JH), on different orbitals U, (U − JH), or-
bital exchange JH and the long range interactions term
V αβ

γδ (r− r′) (the 1D system itself is unable to fully screen
Coulomb interactions [23]). The Hubbard terms are the
largest energy scale in the problem [18,21,22], the value
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of U computed for a sparse LMO lattice [18] is 6.4 eV,
while cRPA calculations on atomic Mo, within t2g mani-
fold (with all other orbitals contributing to screening), for
a dense fcc lattice [34] give U = 3.7 eV and J = 0.55 eV
while for a dense oxide lattice [35] U = 3.8 and J = 0.5 eV.
The long-range part V αβ

γδ (r−r′) is also substantial due to
poor screening in LMO and furthermore does depend on
the orbital index because of an extended nature of eigen-
wavefunctions. This constitutes a very complicated prob-
lem, whose solution is not accessible neither in analytic nor
in numerical way, but even the Hbs does not exhaust en-
tire problem we face in the LMO. Since the LMO is likely
to be very close to the quantum phase transition [21],
and we are interested in the low energy phenomena, we
must incorporate further perturbations to obtain the full
hamiltonian:

Htot = Hbs +
∑

α,k

tα−β(c†σ̄α(k)cσ̄β(k) + h.c.) +Hso. (2)

These are inter-orbital hybridization and spin-orbit cou-
pling term, where the latter is in a usual form Hso ∼
ΔsoL̂ · σ̄ (see Sect. 2.3 for an estimate of Δso). They are
expected to be at least order of magnitude smaller than
the smallest energy scale in Hbs hence it is justified to con-
sider them as perturbations and to zero order assume that
spin and orbital are still good quantum numbers in our
problem (so e.g. they can be used as an index of εσ̄,α(k)).
Obviously the extra terms are present only in a multi or-
bital version of our problem, actually they are unavoidable
in LMO which is a system with a reduced symmetry (dis-
torted octahedra) and for instance JH is not rotationally
invariant in the orbital space (hence a tensor ĴH shall gen-
erate the above given perturbations upon contractions of
higher-order interaction terms).

From previous DFT studies [18,19,31] we know the
single-particle dispersions εα(k) which tell us that within
the t2g manifold, (a pair of) 1D-dxy bands crosses EF .
Actually, this assertion is confirmed by several ARPES
experiments [16]. Hence a foundation of the theoretical
description of LMO has to be a many-body 1D model (so
first one tackles Eq. (1) with α (orbital index) set to dxy).
Indeed, this is exactly what was accounted for within the
TLL 1D theory in reference [21].

On a single-particle level using the 1D physics is per-
fectly admissible because within the dxy manifold the
chains are not hybridized down to energies below 10 meV
(they are coupled only via long-range Coulomb interac-
tions). However the dxz, dyz are split away from EF only
due to a small inter-chain π-hybridization gap Δh ≈
0.4 eV formed between the doublet of chains. Please note
that this gap is not only smaller than on-site Hubbard U ,
but also [34] smaller than Hund JH on Mo sites, hence
the states split by Δh are susceptible to mixing by many
body effects. This is particularly relevant for inter-orbital
particle-hole virtual excitations which must enter into a
re-summation of Feynmann diagrams since they represent
a sub-set of diagrams with the maximal divergence num-
ber. In other words, we aim to incorporate these dxz, dyz

particle-hole diagrams into the parquet re-summation that
had so far lead us [21] to standard dxy-TLL.

In a dilute limit, the most natural way to re-introduce
fermions from the diz manifold back into the low energy
sector is by postulating that they can form an excitonic
state with an energy close to the EF . Taking into ac-
count the size of the gap Δh (with EF in the middle
of it), this needs to be a small exciton with a binding
energy of order 0.2 eV. A standard argument, opposing
such construction, would be that even upon disregard-
ing 1D metallic states from dxy we have a semiconduc-
tor with a rather narrow gap, hence excitons should be
large (in real space) with small binding energies. How-
ever this overlooks a crucial peculiarity of purple bronze,
that comes from a proximity to the quarter filled Mott-
CDW state: it is a propensity to form a chess-board pat-
tern of charges identified in reference [21] (see Fig. 3b)
therein and later the tendency was confirmed in a nu-
merical DFT+DMFT study in reference [22]. This corre-
sponds to an enhanced charge susceptibility and indeed
a direct calculation [36] within a simpler RPA framework
showed explicitly such enhancement with a broad peak
around q = (0, π/(b/2), π/(c/2)). Staying on the RPA
ground, this implies an enhancement of an inverse dielec-
tric constant ε−1(ω = 0, q = (0, π/(b/2), π/(c/2))) which
enters to effective electron-electron interactions (we take
V αβ

γδ in Eq. (1) which has screened Coulomb-character:
V αβ

γδ = VCoulε
−1). Then from result of reference [36],

by taking a Fourier transform of ε−1(q), we find that
a pair of fermions located at a characteristic distance
|rex| =

√
(b/2)2 + (c/2)2 can interact quite strongly. This

statement is valid no matter if the system actually reaches
the charge ordering [36] or only stays in the vicinity of it.
We can then postulate an existence of a small exciton of
a size rex, where electron and hole are bound on a single
plaquette consisting out of four Mo sites. The plaquette is
defined as a planar structure within a unit cell consisting
of those Mo sites which contains, according to previous
DFT studies [18,21,22], a vast majority of the t2g density
(see Fig. 1). Since we are in a strong coupling limit, it
is very hard to estimate a binding energy of the exciton.
Based on a general argument, we only note that a hole
(partially) located in between the Mo chains (see Fig. 1)
compensates an enhanced electronic density formed by the
π-bonding state.1 So indeed, the bonding energy should be
roughly of order of a half of hybridization gap Δh.

Due to an enlarged density of states at the band bot-
tom exciton states appears in BZ (Brillouin zone) in be-
tween a maximum of valence and a minimum of con-
duction band. Based on the LMO band structure [19],
we know that in LMO for each diz band, for ±kc, there
are lines of valence band maxima and lines of conduc-
tion band minima that seem to be just above it. Hence
for every kb there is a favourable condition (as a function
of kc) to create an intra-orbital direct exciton and an inter-
orbital in-direct exciton. Summing up over k (see Eq. (3))

1 For an exciton of the postulated size the bonding-band hole
is constrained to be in that space.
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allows to build a localized boson. Moreover, for such tight
configuration of an electron and a hole, a relatively large
Hund coupling on Mo atom may give an additional contri-
bution to the binding energy. This is present for the inter-
orbital exciton (L̃ = 1 configuration) and the electron-hole
spin triplet configuration (S = 1) and gives a favourable
contribution from the spin-orbit coupling that can be as
large as [37] 0.1 eV. Resulting exciton is a so called dark
exciton for which a direct recombination with emission of
a photon is prohibited.2 We can then claim that a long-
lived excitonic state with a sufficient binding energy is very
plausible in LMO. We define an annihilation operator of
such particle (for simplicity we put it at x = 0):

a(x = 0) =
∑

kb

cdxz,↑(kb)(z1hdyz,↑(kb) + z′1hdyz,↓(kb))

+ cdyz ,↓(kb)(z2hdxz,↓(kb) + z′2hdxz,↑(kb)) (3)

where h†α,σ̄(k) is an operator that creates a hole in a
band α with spin σ̄ and momentum k, by definition
h†α,σ̄(k) ≡ cα,−σ̄(−k). The zi are complex numbers, vari-
ational coefficients that need to be evaluated (in a low
symmetry environment of LMO) by an independent cal-
culation. The excitons live on b-c plane of LMO crys-
tal and as such should be indexed by two coordinates.
However, the core of this paper is dedicated to indepen-
dent excitons appearing (or passing through) one chosen
1D TLL system. Some possible issues related to 2D exci-
tons’ interactions and the perpendicular dynamics shall be
handled in Section 2.4.

One can raise an issue: if relaxation into these states
is so weak then how they get populated at all. Naturally,
in any electronic liquid there is an incoherent background
of excitations, they are of thermal, phononic or kinematic
origin and constitute, e.g. the screening cloud in the di-
lute limit. But these are mostly short lived, “bright” ex-
citons. However if a dxy fermion interacts with an exci-
ton, and as we show below it indeed does, then there is
a possibility of a spin-exchange process (∼JH) with one
of the exciton’s constituents. Upon such exchange stan-
dard S = 0 exciton turns into the S = 1 dark exciton.
Since the 1D dxy fermion can also absorb any perpendic-
ular momentum kc, then the indirect, inter-band excitons
are created as well. This scattering channel is particularly
strong when the kb coordinate of maximum/minimum of
valence/conductance bands fall close to the kF of the 1D
dxy fermions, since then the envelopes of respective Bloch
waves are the same. From LMO’s band structure [18,19]
we know that this condition is met along the P-K line of
the 1st BZ [actually, on this peculiar line velocities of diz

fermions (slope of band structure slightly away from ex-
trema) are close to VF of dxy. This further increases the
scattering cross-section]. We then deduce that if our con-
jecture about the exciton’s creation in exchange process is
true then the “dark” excitons will be the most efficiently
produced (and visible) along the P-K line.

2 Triple photon process would be necessary, or re-
combination due to phonons, but the recombination is blocked
since phonons energies are small while JH is significant.

We conclude this section by stating that the way to go
beyond the pure 1D model [21], to capture the physics of
equation (2), is to include excitonic effects by introducing
the following hamiltonian:

H̃tot = H1D +Hex +Hf−ex (4)

where the term H1D describes 1D-dxy fermions (described
in Sect. 2.2), the term Hex describes dxz-dyz excitons pos-
tulated in Section 2.1 (we come back to it in Sect. 2.4)
and the term Hf−ex describes coupling between the 1D
fermions and the excitons (studied in Sect. 2.3). The ap-
proximation H̃tot is valid for a specific case when only 1D
bands are crossing Fermi energy while other t2g orbitals
contribute through a stable, low energy exciton particles
(one can call it the “exciton pole” approximation).

2.2 Physics of dxy fermions

The 1D sector H1D can be described by the Tomonaga-
Luttinger liquid [23,38], whose properties are well known.
For the particular case of LMO the procedure of deriving
TLL was outlined in detail in reference [21]. The TLL
hamiltonian reads:

H1D[ν] =
∑

ν

∫
dx

2π

[
(vνKν)(πΠν)2 +

(
vν

Kν

)
(∂xφν)2

]

(5)
where vν ,Kν are velocity and TLL parameter of a given
bosonic mode ν, these depend on electron-electron in-
teractions (terms ∼U, V with α = dxy in Eq. (1)) with
small momentum exchange. Formally equation (5) is a
result of a parquet re-summation of all α = dxy terms
in equation (1). This part are the density-density inter-
actions that can be expressed using ρν(x) where, e.g.
ρσ̄(x) = c†σ̄(x)ˆ̄σσ̄,σ̄′cσ̄′(x) (ˆ̄σσ̄,σ̄′ is a Pauli matrix act-
ing in a spin space). Equation (5) is written in terms
of density fields φν(x) and canonically conjugate fields
θν(x), with Πν(x) = ∂xθν(x). To define them, first one ex-
tracts long wavelength behavior around the Fermi points.
c†σ̄α(x) = exp(ikFx)ψ

†
Rσ̄α(x) + exp(−ikFx)ψ

†
Lσ̄α(x) and

then introduces bosonic fields, collective modes,

ψR/L,σ̄,α(x) = κR/Lσ̄α
1

2πα

× exp

(
i

[
∑

ν

σ̄α(φν (x) ± θν(x))

])

(where κR,Lσ̄α is a constant operator, Majorana fermion,
introduced to ensure proper anti-commutation relations).
A real space field ψσ̄α(x) is an eigenvalue of the of the
second quantization operators c†σ̄α(x) (that creates 1D dxy

fermion in a given point), in the Fock space of the coher-
ent states. In the case with two 1D dxy bands and thus
four Fermi points, a two-leg ladder model is necessary to
describe the physics [23]. Both spinon and holon acquire
total and transverse flavor, in equation (5), ν = ρ±, σ±.

As usual in 1D theory, TLL state is perturbed by non-
linear cosine terms. In reference [21] we have found that
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the most relevant cosine terms are the umklapp terms.
These are most likely to drive us away from the critical
TLL state and open spectral gaps. They involve charge
field φρ+ and their relevance is intimately related to the
long-range character of interactions which drive Kρ± way
below the non-interacting value K = 1. The non-linear
terms are:

1. Umklapp scattering (at quarter filling):

Hum = g3

∫
dx cos(4φρ+(x) + δx) · [cos(4φρ−(x))

+ ξ {cos(4φσ+(x))−cos(4θσ−(x)) + cos(4φσ−(x))}]
(6)

where δ is a finite doping ∼1% present in LMO. On
the top of an intra-chain umklapp we have introduced,
following reference [39], various inter-chain processes
with amplitudes multiplied by a coefficient ξ � 1 and
signs determined by the convention of Klein factors.

2. Inter-chain 4kF processes:

Hπ
4kF

= gπ
4kF

∫
dx [cos(4φρ+(x) + δx) + cos(4φρ−(x))] .

(7)
3. Further exchange scattering processes (q = 2kF ) that

are present in TLL irrespective of commensurabillity.
In the case of two chains coupled by interactions the
most relevant terms are:

Hπ
1 = gπ

2kF

∫
dx cos(2φρ−(x)) [cos(2φσ+(x))

+ cos(2θσ−(x))] . (8)

4. Moreover there are the single particle cosine terms that
push us outside TLL fixed point:

– the single particle hopping between the chains, which
according to reference [40] has the following form:

t⊥
∫
dx [cos(φρ−) cos(φσ−) + cos(φρ+ + δx) cos(φσ+)]

× cos(θσ−) cos(θρ−), (9)

– the potential backscattering on the Peierls distortion
which may have several variants. In general it is a term:

VP

∫
dx exp(φρ+) cos(φρ−)

× F
[
cos(φσ+), cos(φσ−), cos(θσ−),

× sin(φσ+), sin(φσ−), sin(θσ−)
]

(10)

where a functional F [] is a linear combination whose
precise form encodes the spin/chain dependence of
VP [41].
[Please note that in all formulas above we deal with the
case of an interaction coupled ladder V⊥ � t⊥ which
is less common than the hybridization coupled ladder.
In particular this causes a swap θρ− ↔ φρ− in some
cosines’ arguments.]

In reference [21] we studied, using standard RG methods,
the TLL instabilities due to above given non-linear terms.
It was found that in the range of parameters characteriz-
ing LMO, possible spectral gaps (if any) are smaller than
1 meV. Hence the effects introduced in the following Sec-
tion 2.3 are not suppressed by any spectral gap, on the
contrary they are stronger and should be introduced to
theory as perturbations on the level of equation (5).

2.3 Fermion-exciton coupling

2.3.1 The coupling

We now introduce a coupling between 1D fermions and
the excitons. In a small coupling limit we restrict ourselves
to the lowest order possible coupling term which one can
write down:

Hf−ex =
∑

σ̄σ̄′,k,q

Vf−ex(k, q)(cσ̄(k)Ôf−exc
†
σ̄′(k−q)a†q +h.c.)

(11)
where the exact form in the charge/spin/orbital space, the
Ôf−ex, is to be derived in this section.

Exciton is a neutral and tightly bound object, so its
Coulomb-interaction with an electron should be weak.
However, there is a coupling with a spin degree of free-
dom. It originates from two distinct sources:

– H
(1)
f−ex is a coupling between an angular momentum of

an exciton J and a spin σ̄ of a dxy fermion. This is due
to spin-orbit coupling and so:

H
(1)
f−ex ∼ Ĵ · ˆ̄σ(x). (12)

– H
(2)
f−ex: a tightly bound electron-hole pair does pro-

duce a large local electric field which can couple with
a moving electron via the Rashba effect:

H
(2)
f−ex ∼ ˆ̄σ × k̂. (13)

Aiming for a second quantization formula, equation (11),
we define the coupling potentials, e.g. V (1)

f−ex(k, q) = 〈Ψ ′|Ĵ ·
ˆ̄σ(x)|Ψ〉, where |Ψ〉 is a state of an entire system (close
to its ground state), a tensor product of TLL and ex-
citons. The strength of such coupling, we call it γ (so
γ ≡ max(|Vf−ex(k, q)|)), can be determined from the
Hund’s rules applied to 4-d Mo − t2g orbitals in the lo-
cal, atomic Mo − dij limit. When diz orbitals are both
occupied in low spin-state, then there is one unpaired dxy

occupied (1/2 probability). This configuration is a local
doublet S2 (other states with L = 1 are eV’s away). From
this perspective a fluctuation to diz manifold of a con-
duction electron is favorable since the resulting P 3 state
(favoured by Hunds rules) has energy lowered by –0.12 eV,
so Δeff

so ≈ 0.12 eV. There are four Mo sites within one
unit cell and wavefunctions can further delocalize (with
probability ≈10%) onto outer Mo sites, so from a basic
combinatorics a probability of such contact interaction
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is
(
4
2

)
(1
4 )20.92 ≈ 0.1, where first term is a binomial coeffi-

cient. Hence a strength of interaction between exciton and
dxy-fermion is roughly 10% of Δso, that is γ ≈ 12 meV.

The second term is not usually encountered and we
shall tackle it in detail below. Here we only notice that
while angular momentum is related to kinetic energy of
electron-hole system, the electric field is related to a po-
tential energy of the same system. The two must be equal.
Since, both Rashba and Ĵ · ˆ̄σ are of a relativistic origin then
we expect both terms H(1,2)

f−ex to be approximately equal.
The delocalized nature of LMO eigenstates, which is

known from all DFT studies [18,22,31], and a finite size
of the excitons both imply that the fermion-exciton scat-
tering process takes place along a non-negligible range of
distances. Hence the Vf−ex(x, x′), where x′ is an electron-
exciton distance, is certainly not a Dirac delta function
δ(x′). Then, upon Fourier transformation to momentum
space, one realizes that Vf−ex(k, q) is a decaying function
of the exchanged momentum q, which justifies our focus
on forward (density-density) scattering processes. For con-
creteness, if we take both wavefunctions (of an exciton and
a fermion) to be Gaussian packets then their convolution
is also a Gaussian with a width of order

√
2b. By taking

a Fourier transform one obtains a Gaussian in q-space,
hence a function slowly decaying at low q, but quickly
suppressed for q > π/(2b).

The fermion-exciton coupling will renormalize (via lad-
der series of vertex corrections) the effective excitonic
propagator.3 The bare energy ε0 of an exciton may de-
pend on momentum due to a bare hopping integral Γij

(see Eq. (19) below) but we neglect it for a moment. In
a mean field picture we integrate out the fast fermionic
states and in a very similar way like in reference [42] we
arrive at:

D−1
ex (k, ω) = ω2 + ε20 +

γ4k4

ω2 + (vσ+k)2
(14)

where momentum is counted in units α. In the limit
of small ω and large vσ+ equation (14) leads to an ef-
fective propagator with a linear dispersion εeff (k) ∼
(γ/α)γ/(αvσ+) · k where α is a UV cut-off in reciprocal
space (taken the same for spin-orbit coupling and kinetic
energy). Please note that according to reference [21], the
vσ+ ∼ Jeff ≈ 0.2 eV (thus vσ+ � VF ), hence a perturba-
tion γ (as well as the induced velocity) is substantial at
energies of order T ∗.

2.3.2 Bosonization

Standard, textbook [43] way of dealing with a cou-
pled fermion-boson problem equation (11), in a single-
fermion limit, is by applying the Lang-Frisov trans-
formation: Û(k) = exp(Ŝ(k)), with Ŝ(1,2)(k) =
∑

q′ n(x) exp(ıq′x)
V

(1,2)
f−ex(k,q′)

ε0(q′) (a†q′ + a−q′), which absorbs

3 Strictly speaking the exchange coupling of L̃z = 0 with
L̃z = ±1 states will be renormalized as well, but we do not
focus on it in the following.

the H
(1,2)
f−ex term. This transformation corresponds to

dressing up a fermion with a polaronic cloud:

ψ̃k(x) =

exp

⎛

⎝
∑

q′
n(x) exp(ıq′x)

V
(1,2)

f−ex(k, q′)
ωq′

(a†q′ + a−q′)

⎞

⎠ψk(x)

(15)

where q′ is a momentum absorbed/emitted by an exciton
and ωq′ is its energy and n(x) is a number of fermions at
a given point, in the following we take n ≈ 1 in a position
of exciton creation. The knowledge of ψ̃k(x) in principle
opens a way to compute the spectral function, although
further approximation about the nature of electron-boson
coupling is necessary (e.g. adiabatic regime approxima-
tion). The Lang-Frisov transformation contains rich phe-
nomenology of polaronic physics, but it is sufficient only
for weakly interacting fermions. On the contrary from
several experiments [7,9,15,16] it is known that in pur-
ple bronze we are dealing with TLL dominated by in-
teractions (the single particle exponent α is significant,
α > 0.5), which constitutes a much more complicated
problem where electron-electron interactions cannot be
taken perturbatively.

To tackle this problem, we note that in our case the
Vf−ex(k, q′) does not depend on q′ for small enough q′
and the bare exciton energy ε0(q′) is approximately con-
stant.4 Then a remaining summation in equation (15), of
operators aq′ over q′, gives us a purely local operator a(x).
Since V (1,2)

f−ex have forward character (Sect. 2.3), and a large
exchanged momentum could destroy the exciton, we re-
strict only to processes when fermion and boson exchange
small momenta q′. So from now on we take interaction
term of only one argument V (1,2)

f−ex(k, q = 0). With this as-
sumption we can focus on the low momentum sector of
1D theory that can be expressed in terms of fermionic
(dxy) density operators ρν(x). Then, not only the local
polaronic cloud factorizes out, but furthermore, thanks to
linearity Vf−ex(k) ∼ k each contribution to two parti-
cle density ρ̃q =

∑
k ψ̃

†
kψ̃k−q shall have the same factor:

ρ̃q = exp(qVf−ex)ρq. Thanks to that we can separate out
polaronic contribution and proceed with a standard con-
struction of TLL based on the ρq bosonic operators mul-
tiplied by exp(Ŝ(q)) ∼ exp(const · q). In particular this
means that entire Section 2.2 remains valid also in the
presence of bosons and we can go ahead with bosoniza-
tion of H(1,2)

f−ex.
Once it is established that TLL construction holds,

and that (also in the presence of interactions) the cou-
pling has a local character of excitons with a density of 1D
dxy fermions, then the H(1)

f−ex term can be bosonized in a
rather straightforward way as it is equivalent to a displace-
ment coupling between an amplitude of a spin-wave ˆ̄σ(x)

4 More precisely, for a non-zero Γij , one can take q2 depen-
dence both in numerator and in denominator, that cancel out
each other.
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and the local angular momentum J . Since, by construc-
tion of the excitonic state, 〈Jz〉 ≈ 0, then we may focus
on the transverse component. Then the coupling reads:

H
(1)
f−ex =

∫
dxγ∇φσ+(x)|J |(a†(x) + a(x)) (16)

where we used the fact that spin density ρσ̄(x) is re-
lated to a gradient of a spinfull collective mode ρσ̄(x) =
∇φσ+(x), and the translational symmetry of this term (so
Vf−ex(x) = γ = const).

For H(2)
f−ex the coupling is with momentum density.

Based on a form of the Rashba coupling Ĥ ∼ ˆ̄σ×k̂ and the
fact that electric field changes sign when we swap the legs
of the ladder, we can make a conjecture that the bosonized
version of the 1D hamiltonian will be:

H
(2)
f−ex =

∫
dxγ(a†(x) + a(x))Πσ−(x) (17)

where Πσ− is a momentum operator of a spin σ− mode,
that is a relative spin fluctuation between the two chains.
Since Πσ−(x) = ∇θσ−(x), equation (17) (as well as
Eq. (16)), is very similar to a problem with a forward
scattering on local impurities. This is not an accidental
coincidence: excitons are in an extremely dilute limit and,
above T0, their relative positions and angular momenta
are uncorrelated, so a good approximation is that the dxy

fermions randomly creates bosons, drags them and then
release. However, there is also a difference: in comparison
with the standard case of a varying chemical potential, the
φρ+ mode is substituted with θσ− mode, that expresses a
kinematic character of the H(2)

f−ex coupling.
Overall, the hamiltonian describing gapless TLL plus

exciton reads:

H̃tot = HTLL +
∫
dxγ(a†(x) + a(x))∇θσ−(x)

+
∫
dxγ(a†(x) + a(x))∇φσ+(x) +Hẽx (18)

Based on considerations in Section 2.4, above the T0

an effective hamiltonian for excitons (given momentar-
ily in its 2D form) is Hẽx =

∑
k[cẽxkba

†
kb,k⊥akb,k⊥ +

Γk2
⊥a

†
kb,k⊥akb,k⊥ ] with an effective velocity along the

b-axis determined by the self-energy correction cẽx =
γ(γ/vσ+). However, since the hopping Γ is the smallest
energy scale in the problem, order of magnitude smaller
than V

(1,2)
f−ex, taking the adiabatic approximation for exci-

tons is justified. In equation (17) we observe that the two
terms H(1)

f−ex and H(2)
f−ex involve different bosonic modes,

so in bosonic language it becomes clear that they commute
and, e.g. one can define the Lang-Frisov transformations
for each of them separately.

2.4 Properties of excitons

The excitonic part of the system Hex can be described as
a system of bosons (tightly bound small excitons) mov-
ing on a triangular lattice (Fig. 1) with a bare hopping

integral Γij . Γij is a correlated hopping of an electron
and a hole for which one must pay an energy cost Δh. It
is driven by an inter-orbital hybridization txz−xy on the
Fermi level. txz−xy must be of the same order as a wig-
gling of Fermi surface found in DFT calculations, that
is ∼15 meV. From simple perturbation theory one finds:
Γij = 4t2xz−xy/Δh ≈ 2 meV where a factor four accounts
for different ways of performing the process in spin-orbital
space.

Up to now we neglected 2D interactions between exci-
tons. This is a significant deficiency, since these are hard-
core bosons with strong interactions, that is putting two
excitons on the same plaquette has an energy cost Uex of
a few eV (≈U in Eq. (1)) and on the neighbouring plaque-
ttes Vex(r = 4b) is of order 0.5 eV (≈V (2b) in Eq. (1)), the
latter value is found from estimates in references [18,21].
Overall the Hex reads:

Hex =
∑

i,j

Γij(a†(i)a(j)+h.c.)+
∑

i

(Uex/2)na(i)(na(i)−1)

+
∑

i,r

Vex(r)na(i)na(i+ r) + μ
∑

i

na(i) (19)

where na(i) is a boson density on an ith plaquette, μ is
their chemical potential. Interactions between further pla-
quettes Vex(r) are included. On a-c plane these are weakly
screened dipole-dipole interactions decaying as 1/r3 while
along b-axis these are retarded interactions mediated by
spinons, second order in γ. However, since the bare exci-
tons’ hopping is tiny, even when r = 20b (large dilutions)
interactions can be dominant that is V (20b) > Γij . From
DFT [18] we know that an optimal admixture of dxz, dyz

is of order ∼1%, so we expect exciton-exciton distances to
be of order δ−1

ex ≈ 10b (where δex is a dilution of an ex-
citonic liquid). Overall, we can distinguish three distinct
regimes of excitonic physics:

(T, ω) > γ at highest energies “dark excitons” are very
rare and decoupled from the rest of the system;
(T, ω) < γ in this intermediate regime “dark excitons”
can be efficiently created and scattered by dxy fermions,
these are random processes and excitons can be considered
bound to dxy fermions;
(T, ω) < γ2Vex(r = δ−1

ex ) in this lowest energy regime the
long range excitons’ interactions play a dominant role.

It should be noted that, when the system passes from the
intermediate to the low temperature regime, the renormal-
ized dispersion of the hard-core bosons εeff (k), see equa-
tion (14), may cross EF and then bosonic system acquires
a finite chemical potential.

Dilute gas of hard-core bosons can be mapped, us-
ing Holstein-Primakoff transformation, onto a (pseudo-
)spin system: ˜̃S+(x) = a†(x), ˜̃S−(x) = a(x), ˜̃Sz(x) =
a†(x)a(x) − 1/2. ˜̃Sz is related to an occupation (or not)
of a given plaquette by an exciton. The hamiltonian equa-
tion (19) can be rewritten in terms of ˜̃S operators:

Hex =
∑

i,j

Γij
˜̃S+(i) ˜̃S−(j) +

∑

i,r

Jz(r)
˜̃Sz(i)

˜̃Sz(i+ r) (20)
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where Jz(r) ≡ Vex(r) is a long range uni-axial
(pseudo-)spin-coupling. By taking into account the
density-density character of repulsive interactions in equa-
tion (19), we can focus on the last term in equation (20)
and the problem is simplified to the 2D anti-ferromagnetic
Ising model on a triangular lattice (see Fig. 1 where hop-
ping paths of excitons, that define connected sites of the
pseudo-spin lattice, are indicated). Since Uex and Vex(r =
2b) are by far the largest energy scales, such model can
be solved by building larger and larger blocks, with one
˜̃Sz = +1/2 inside, that are anti-ferromagnetically (ÃF )
coupled with their vicinity (in the original language this
corresponds to Wigner crystal formation). Clearly we can
continue this procedure as long as Vex(rb) ≥ Γij , where rb
is the block size. This is a strongly frustrated model and is
known [44] to undergo an order-by-disorder phase transi-
tion favouring the most flippable ÃF state. The transition
is driven by an entropy gained due to quantum tunneling
between up/down pseudo-spin states Γij (that is a hop-
ping of excitons in our original model). A critical temper-
ature T0 is a fraction of the hopping [44], roughly Γij/2.
From our previous study on LMO we know that this is of
the same order as experimentally observed crossovers at
25 K, which suggest to interpret the experimentally ob-
served T ∗ as such transition. This conjecture is supported
by a very weak signature of the transition in the specific
heat and lack of a signal in X-ray scattering (as expected
for a BKT phase [44] of neutral bosons).

3 Observables

To validate our construction we calculate some of its ex-
perimentally observable consequences. We begin, in Sec-
tion 3.1, in the intermediate energy regime above T0

where the physics is defined by 1D fermions (TLL) ran-
domly scattering on excitons (with scattering amplitude
∼10 meV). The non-linear terms, equations (6)–(8), are
ineffective in this regime so we disregard any spectral
gaps(∼1 meV) and take equation (5) as a good approxi-
mation for the dxy fermions.

3.1 Spectral function

The first observable, which we want to compute, is the
spectral function of 1D fermions which is directly mea-
surable by probes such as ARPES or STM. The presence
of excitons modifies fermionic spectral function. We fol-
low a case of a forward scattering on disorder [45] and
absorb fermion-exciton coupling terms in equation (18)
by phase shifts of bosonic θσ− and φσ+ modes, e.g.:

θ̃σ− = θσ− +
K−1

σ−
vσ−

∫ x
dx′γ(a†(x′) + a(x′)). An important

modification in comparison with the studies of a forward
disorder is that instead of random immobile impurities
(that do not conserve momentum) now we study ran-
dom scattering on a coherent bosonic bath, an effect that
does enter to correlation function. From bosonization ba-
sics, outlined in Section 2.2 we know that the fermionic

fields ψ(x) depend on bosonic fields as exp ı(
∑

ν φν + θ̃ν).
Clearly, the functional dependence on bosonic operators
is the same as in equation (15) which not only justifies
our approach but also allows to note that the hermitian
dynamics of polarons will translate into a proper com-
mutation relations of θ̃(x) fields (same commutation alge-
bra as for the standard TLL θ(x) field). On the level of
fermionic correlation function the shift θσ− → θ̃σ− can be
accommodated by:

〈exp ı(θ̃σ−(x, t) − θ̃σ−(0, 0))〉 =
〈

exp ı

[
K−1

σ−
vσ−

∫ x

dx′γ(a†(x′) + a(x′))

]

× exp−ı
[
K−1

σ−
vσ−

∫ 0

x

dx′′γ(a(x′′) + a†(x′′))

]〉

× 〈exp ı(θσ−(x, t) − θσ−(0, 0))〉 (21)

where we assume the first order coupling between exciton
and TLL, such that correlation function factorize into TLL
and excitonic parts. Furthermore, taking the adiabatic
limit for bosons implies that there is no time-dependence
imposed by the presence of the a-operators. Since only
the connected diagrams (also for excitons-fermions pro-
cesses) should be accounted, then the presence of excitons
manifest in correlation function simply as an extra fac-
tor Iθ̃σ−(x) = exp[(ıKσ−γ

vσ−
)2
∫ x

dΞ
∫ x

dξ〈a†(Ξ−ξ/2)a(Ξ+
ξ/2)〉] where a Debye-Waller relation for a correlation of
an exponential is used (and we moved to relative ξ and
global Ξ coordinates of exciton).5 Then to compute the
Iθ̃σ−(x) we need to know a bosonic propagator in real
space or to be more precise a good approximation for
an effective propagator at low energies 〈a†(ξ)a(0)〉eff . Ac-
cording to the previous section we take hard core bosons
(that can be mapped on spin-less fermions) and, following
equation (14) and Hẽx, assume their dispersion is renor-
malized by Vf−ex, such that ωk ∼ k. Upon Fourier trans-
formation of a zero frequency limit Dex(k) ∼ 1/k to real
space we obtain (for a retarded Green’s function) a Heavi-
side function DR

ex(ξ) ∼ Θ(ξ−0). Then the causal function
〈a†(ξ)a(0)〉eff = Θ(ξ − 0) + Θ(0 − ξ). Substituting this
above we arrive at the following expression:

Iθ̃σ−(x) = exp

[
−K

−2
σ−γ

2

v2
σ−

∫ x

0

dΞ[(Ξ − x) + (Ξ + x)]

]
.

(22)
Upon performing the integration we arrive at:

Iθ̃σ−(x) = exp

[
−K

−2
σ−γ

2

v2
σ−

x2

]
(23)

this factor Iθ̃σ−(x) multiplies any correlation function

〈exp θ̃σ−(x, t) exp θ̃σ−(0, 0)〉. A very similar reasoning can
5 The 〈a†(0)a†(0)〉 is projected out to high-energy sector ω ∼

U , the 〈a†(Ξ−ξ/2)a†(Ξ+ξ/2)〉 = 0 in the absence of superfluid
order parameter and the local bosonic density 〈a†(ξ/2)a(ξ/2)〉
is assumed constant such that respective terms cancel.
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be performed for a correlation function of φ̃σ+ field,
that leads to an analogous Iφσ+(x) factor. Overall the
two Gaussians can be combined and we arrive at a
result that the fermionic spectral function, A(x, t) =
Im〈ψ†(x, t)ψ(0, 0)〉, has a form of the TLL spectral func-
tion broadened by a Gaussian function:

A(x, t) = exp

[
−γ2

(
K−2

σ−
v2

σ−
+
K2

σ+

v2
σ+

)
x2

]
ATLL(x, t).

(24)
Please note that, exactly like in a case of Lang-Frisov
transformation for free fermions, the effect of excitons in
TLL enters through an exponential factor. From equa-
tion (23) we immediately deduce that in real space, for
a strictly local probe like STM, the effects of excitons
are invisible. Actually this is in agreement with the ex-
periment, where a perfect fit to TLL was found in the
STM [7] and angle integrated PES [16] measurements. To
study a reciprocal space effects we need to make a Fourier
transform. We know the Fourier transforms for both ATLL

and a Gaussian, so in momentum space the total spectral
function AT (q, ω) is simply ATLL(q, ω) convoluted with a
Gaussian:

AT (q, ω) =

β−1ATLL(q, ω) ⊗ exp

⎡

⎣−γ−2

(
K−2

σ−
v2

σ−
+
K2

σ+

v2
σ+

)−1

q2

⎤

⎦ .

(25)

Characteristic energy scale of a Gaussian is of the same
order as exciton-spinon coupling γ. A spectral function
in the form AT (q, ω) has been recently proposed [16] to
provide a very good fit to ARPES data of LMO in the
low temperature phase, below 150 K. Crucially, the max-
imal momentum broadening (indeed of order γ/VF ) was
observed along the P-K line of BZ. Moreover, an addi-
tional bosonic bath introduces an extra β−1 factor. This is
in agreement with a mysterious experimental finding [15]
where a perfect thermal scaling relation of TLL was found
with the only discrepancy that the thermal exponent η
was shifted by T 1 (instead of η = α − 1, η = α was
detected). In the experiment [15] this new scaling seems
to hold for spinons that are coupled with the bath but
not for holon part which seems to obey the “correct”
TLL scaling without the missing T−1 power. Obviously
more energetic many-body excitations, that is those with
Max[ω, T ] > γ, are to fast to be captured by excitons,
they move without the polaronic cloud. Hence the effects
of the broadening shall be visible only for sufficiently small
temperatures/frequencies. Another characteristic feature
of our broadening is that its width does not depend on
temperature.

An issue is whether the phase transition at 30 K can
be detected by a measurement like ARPES. One could
expect that the (imaginary part of) propagator of local-
ized excitons is quite different than equation (25), which
substantially modifies equation (25). However one should
notice that deep inside the Wigner crystal phase the role

of particles that carry on the momentum (excitons) can
be taken over by collective excitations – phonons of the
Wigner crystal. The broadening Gaussian changes its pa-
rameters, but a problem of how precisely it affects an ex-
perimental signal is unclear and has to be left for future
studies.

3.1.1 Influence on the RG equations

The appearance of the Iθ̃σ−(x) and Iφ̃σ+
(x) has very im-

portant consequences for RG treatment of TLL in LMO.
The fact that the correlation function of one of the modes
decays exponentially, implies that all correlation functions
that contains this mode are suppressed. So, for ω < vσ−kF

where our derivation of equation (23) holds, the Iσ± fac-
tors will appear every time when the on-shell correlations
are computed. This affects beta functions for the non-
linear interaction terms equations (6)–(8) that are com-
puted at every step of RG. The lower the on-shell energy
scale, the longer is the characteristic distance x> and the
suppression is stronger Iθ̃σ−(x> → ∞) → 0. Due to this
extra factor the renormalization group flow is slowed down
already in the intermediate energy range. Each term that
contains either cosnφσ+ or cosnθσ− (where n is a real
number) has the beta function that asymptotically goes
to zero (as if the cosine has effectively become a marginal
perturbation). In particular, upon inspecting terms listed
in p. 5 in Section 2.2 where these cosines are unavoid-
able, one realizes that this mechanism prevents all SU(2)
invariant Peierls distortions VP and t⊥ hoppings (both
terms are notoriously responsible for suppression of 1D
physics), from becoming violently relevant and destroy-
ing TLL in LMO. This may provide an explanation for a
particular rigidity [16] of 1D state in LMO.

It should be emphasized that the localization concerns
the spin sector of the theory, thus e.g. superconducting
phases are not prohibited. One should also note that the
construction of quarter-filling umklapp as well as 4kF

terms required contractions of spin fields in OPE. These
are local contractions, with x→ x′, where Iθ̃σ−(x−x′) → 1
and Iφ̃σ+

(x − x′) → 1, so these constructions are not af-
fected, Hum and Hπ

4kF
remain well defined.

3.2 Resistivity

In order to explore the observable signatures of the phase
transition we need to investigate another probe: electrical
resistivity. Here the advantage is that excitons plays a very
different role below and above the transition.

Above the transition we discuss the problem of 1D
fermions close to quarter filling where the resistivity is
caused by the g3 umklapp terms. It has been postu-
lated [21] that in LMO the umklapp terms are marginal,
hence on a verge of opening the Mott gap. Conductiv-
ity can be expressed as: σ(ω) = ıvρ+Kρ+/[π(ω + M(ω))]
where M(ω) is a meromorphic memory function propor-
tional to a commutator M(ω) ∼ [Πρ+, H ]. The excitonic
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terms in equation (17) do not contain coupling with ρ+
mode, hence they do not influence the resistivity explic-
itly. There are two cosine terms in Hum and H4kF that do
contain cosines of φρ+. We follow standard procedure [23]
to obtain the following temperature dependence of DC
resistivity (for quarter-filled chains):

ρ(T ) =
(

g2
3

πb−1√vρ+

)(
2πb−1T

vρ+

)(8(Kρ++Kρ−)−3)

× (B(2(Kρ+ +Kρ−), 1 − 4(Kρ+ +Kρ−))

× cos(2π(Kρ+ +Kρ−)))2

+
(

g2
4kF

πb−1√vρ+

)(
2πb−1T

vρ+

)(16Kρ+−3)

× (B(4Kρ+, 1 − 8Kρ+) cos(4πKρ+))2 (26)

a formula which can be checked against experiments. For
Kρ+ ≈ 0.25 and Kρ+ ≈ 0.35, values predicted in refer-
ence [21], we expect that the dominant contribution will
be ρ(T ) ∼ T 1.7 and the sub-dominant will be ρ(T ) ∼ T 1.
Based on arguments from Section 3.1.1 we have excluded
the terms in Hum proportional to ξ, as they will be af-
fected by excitons, but naively there should be no further
effect of the excitonic clouds.

What is neglected in this reasoning are initial (UV-
RG) amplitudes of the non-linear interaction terms. The
strength of a bare coupling can be computed by a standard
prescription of going from first to second quantization – to
be precise we need an overlap between an excitonic wave-
function ψa(r) and wave-functions of interacting electrons.
If we use Lang-Frisov transformation, equation (15), then
this physical description takes the following mathematical
form:

g̃3 =
∫
dx2

∫
dx1

∫
dxŪ�[(x− x1)/b]�[(x1 − x2)/b]

× 〈exp[γ/ωkFψ
∗
a(x)ψa(x)]〉〈ρxy(x1)〉〈ρxy(x2)〉 (27)

where Ū = U + V (2kF ) is an effective strength of local
umklapp potential, �(x) is a rectangle function with a
width two (this ensures local character of exciton-fermion
state and fermion-fermion interaction), 〈ρxy(x1)〉 is an ex-
pectation value of the dxy fermion density and ψ∗

a(x) is a
wavefunction of the a-particles, excitons (in many body
language the relation between a† and ψ∗

a(x) is the same
like between c†(x) and ψ(x)). By Taylor expanding the
exponential we arrive at the following correction to g3:

Δg̃3 ≈ Ūnex

2π

( γ
Γ

)2
∫ b

−b

dx〈ψ∗
a(x)ψa(x)〉2〈ρxy(x)〉〈ρxy(x)〉

(28)
where nex is a number of excitons and a factor 1/2π comes
from integrating two presumed Gaussians (over x1, x2). A
similar correction can be derived for the g4kF as well. To
evaluate an integral in equation (28) one needs a precise
form of a wavefunctions which makes it a hard task. How-
ever, simply by noticing that both ψa(x) (see Appendix A)
and dxy have the same node-less character lz = 0 along a

common b-axis, one can deduce that there is no cancella-
tion by symmetry and the integral is finite.

We arrive at a new class of problem where for a ran-
domly chosen fraction of fermions amplitudes of umklapp
scattering are modified. This is, in essence, a disorder
put on the top of (quarter-filled) Mott physics with g3(x)
changing randomly in space/time. From numerical stud-
ies of a standard Mott-Anderson problem it is known that
the two localization mechanisms compete and the critical
U shifts to larger values in the presence of disorder. Our,
slightly modified problem, is an extremely interesting re-
search direction, which needs to be postponed to further
studies.

Below T0 excitons form (Wigner) crystal, so the no-
tion of excitonic clouds accompanying dxy fermions does
not hold any longer. Hence, there is no randomness or sup-
pressed RG beta functions, moreover interactions changes
character due to presence of a crystal of dipoles: from
Coulomb with VCoul ∼ 1/q to (at most) dipolar with
Vdi(q) ∼ F [1/r3] ∼ const·(|q|), that is a constant indepen-
dent of |q|. While all these factors can push the dxy sys-
tem into the (quarter-filled) Mott insulator phase, they are
of only minor importance, since at temperatures of order
40–50 K a presence of a finite doping δ should dominate
the RG flow and prevent any upturn of resistivity. Once
the system’s energy is lowered enough, such that it real-
izes the finite doping δ, the umklapp processes should be
suppressed.

This contradiction with experimental findings can be
re-solved thanks to the ordering of excitons into pe-
riodic structure which we call Wigner crystal. Due to
the emergence of the Wigner crystal with periodicity
πq−1

W along the b-axis6 excitons acquire a finite expec-
tation value for a finite value of momentum qW , that is
〈a†kak+qW 〉 = ΨW �= 0. Thus there is a new term when any
correlation function over the excitonic cloud is computed
〈ψ∗

a(x)ψa(x)〉 ∼ 〈a†kak〉 + exp(ıqWx)〈a†kak+qW 〉. Following
equation (28) this leads to an additional correction to the
umklapp amplitude Δg3 ∼ |ΨW | cos(qWx), where |ΨW | is
an order parameter of the excitonic crystal. As a result
we expect a following term ∼|ΨW | cos(φρ+ + x(δ − qW ))
to appear in the hamiltonian. Clearly, the periodicity of
Wigner crystal may compensate the effect of a finite dop-
ing and cure the problem of incommensurability. Physi-
cally the mechanism of this secondary localization is as
follows: the dopant holes that survived the formation of
a (quarter-filled) Mott-insulator are now localized due to
presence of periodic potential set by the presence of ordered
high-spin excitons. Importantly the effect is proportional
to the order parameter |ΨW |, which implies that it is en-
hanced when the temperature is reduced.

To be precise, in AF-Ising model on the trigonal lat-
tice, there are two low temperature phases [44]. So far, we
took an adiabatic approximation (static exciton lattice)

6 qW is not necessarily directly related to concentration of
excitons: a dilute excitons may form 2D Wigner crystal which
is tilted with respect to a structural crystal lattice, then (by
an overlap of the two lattices) de Moire pattern will form with
a non-obvious periodicity along the selected b-axis.
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which is valid only at the lowest temperatures. In this
regime charge gap opening in the spectrum implies the
Arrhenius-type behaviour of transport, a feature that may
have been detected in LMO [16] only below 10 K. Obvious
advantage of such static approximation is that the physi-
cal role of excitonsis is quite transparent. Immediately be-
low T0 one expects [44] an intermediate BKT phase with
a quasi-long range order, its partial ordering comes from
the fact that one out of three sites is left in a “disordered”
state which leaves space for fluctuations. A simplistic pic-
ture of this order, a toy-model to capture a mechanism
of resistivity just below T0, is (in the first step) forma-
tion of pairs of excitons separated by a distance πq−1

W . A
physical interpretation of resistivity would be that each of
these pairs of excitons (like impurities) has a holon locked
in between them on a “quantum dot” with a small mass
term ∼T0 corresponding to a quantum capacitance. Such
problem, taken together with a cosine potential (from the
rest of Hum in our case), has been discussed extensively
in reference [23] (Chap. 10.2.3). One defines “local” fields
φ±ρ+ = 1/2[φρ+(−πq−1

W /2) ± φρ+(πq−1
W /2)] for which the

action is S0 =
∑ |ωn|/Kρ+φ

+∗
ρ+(ωn)φ+

ρ+(ωn) plus the ca-
pacitance term from φ−ρ+. With this the problem can be
mapped onto tunneling through strong impurity. Based
on this mapping, we are able to predict the following tem-
perature dependence of resistivity:

ρ(T < T0) ∼ T 2−2/(2Kρ+) (29)

hence in this toy-model of cooperative localization the re-
sistivity shall increase as ρ(T < T0) ∼ T−1.7 (again for
Kρ+ ≈ 0.27). This falls close to an experimentally mea-
sured value [4,16].

4 Discussion

Naturally, we would like to explore if there are other ex-
perimental probes that can provide us a clear hallmark of
the novel physics.

Firstly, we discuss an influence of an external magnetic
field on a resistivity in the low temperature phase. In other
words we discuss the influence of the magnetic field on
the order parameter |ΨW |. The most astounding property
of dark excitons, their ultra-long recombination time, is
linked to angular momentum conservation. This can be
spoiled by applying an external magnetic field B perpen-
dicular to the quantization axis. For both terms H(1,2)

f−ex

one could introduce quantization axis nearly parallel to
a-axis (set in the local octahedron system of coordinates,
this makes 〈Jz〉 maximal), so spin-states mixing will be
present for B along the b or c axis. It is known [46] that
the “dark excitons”, thus our hard-core bosons, acquire
a finite life-time ∼B2. Then they leak out of the system
and one should observe melting of the Wigner crystal.
A suppression of resistivity will follow. This goes in-line
with experimental findings from reference [5]. The neg-
ative magneto-resistance effect when B||b is monotonous
and saturates close to 18 T. This energy scale corresponds

to 20 K that is fully melted crystal, |ΨW | → 0, so no contri-
bution to resistivity. When B||c the situation is more com-
plex: it seems that there are two competing mechanisms
and Wigner crystal melting dominates only at high mag-
netic fields. At low magnetic fields fermions’ movement
along the b-axis couples with the magnetic field which
gives rise to Landau diamagnetism and a standard pos-
itive magneto-resistance.

Excitons are usually associated with optical probes,
but “dark excitons” do not couple with light, so they
are invisible by standard spectroscopic methods. This
can be avoided by applying an external magnetic field
which, as already mentioned, mix various orbital momenta
and hence mix bright and dark excitonic states. (In our
case the energy gap caused by excitonic crystal forma-
tion ΔE ≈ 20 K prohibits this mixing, thus ΔE com-
petes with the magnetic field.) We deduce that excitonic
states should provide visible effects in magneto-optical
spectroscopy for sufficiently large magnetic field. Then
they can absorb light in a process when electron is trans-
ferred to other d-orbitals (previously prohibited due to L̃
conservation). Indeed, this allows to interpret a magneto-
chromatic effect detected in reference [30], with charac-
teristic energy scale ≈20 K, where authors concluded that
magnetic field seems to cause reorganization of d-orbitals
of an unknown origin. Remarkably, the effect is present
only for B||b in a very close resemblance to magneto-
resistivity discussed above.

It would be ideal to obtain a direct experimental evi-
dence of the Wigner crystal formation, that would require
a diffraction experiment. Very weak interaction with light
suggest that photon probe cannot be employed. An alter-
native could be low energy electron diffraction (LEED) ex-
periment which, according to its selection rules, is viable,
since exciton’s dipole moment has a component perpendic-
ular to the conducting b-axis. Collecting spin dependent
signals could be used to increase signal/noise ratio. The
biggest obstacle would be the fluctuating nature of the
ordered phase just below T0, as it asks for an experiment
performed in a time-window of nano-seconds (actually this
excludes all STM-type probes). This is on the edge of the
state-of-art LEED capabilities [47].

Finally, let us describe phenomena related to the heat
transfer. Obviously excitons, as a new dynamic degree of
freedom in the system, do carry some heat capacity. For
a linear dispersion, this heat capacity scales like ∼T 3.
An issue is an amplitude of this signal: number of exci-
tons is small and they are the least mobile component
of the system. Moreover in the high temperature regime
they are bounded to dxy fermions, so one needs to dis-
entangle the two signals. The heat carried by excitons
may be hard to distinguish, e.g. from acoustic phonons.
However, a detectable effects are expected in magneto-
thermoelectric measurements, a transverse signal induced
by a magnetic field, preferably with a magnetic field along
the c-axis which does not lead to an immediate extinction
of excitons. We should then measure a tunneling signal in
between the slabs (along the a-axis) induced by an electric
current along the b-axis. The Lorentz force acts on each
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electron and also on an accompanying exciton cloud. For
LMO, which is in the regime Kρ± < 1/3, the particle-hole
tunneling is more relevant than single particle tunneling
between TLLs. Then the excitonic contribution can be
substantial and distinguishable as it carries the heat, but
does not carry the charge. This may offer an explanation
of gross violation of Wiedmann-Frantz ratio detected in
reference [17].

5 Conclusions

In conclusion, the main result of this work is to incorpo-
rate, in a concise manner, a multi-orbital physics on the
top of a well established, many-body Tomonaga-Luttinger
liquid construction. Our idea can be understood as an ef-
fort to capture an entanglement (also non-local) between
various d-orbitals within the t2g manifold. A model that
we obtained, based on excitonic physics, is able to ex-
plain several experimental observations in purple bronze,
that were so far impossible to reconcile. This includes:
Gaussian deviations from TLL spectral function detected
by ARPES [16], missing power of temperature in the scal-
ing relation for spinons [15], mysterious upturn of resis-
tivity that is extremely fragile upon applying magnetic
field [5] and magneto-chromatic effect [30]. We also made
predictions for magneto-thermoelectric coefficients. An in-
triguing path, that has never been even anticipated, is now
laid down for further studies of this exceptional material.
Without claiming to make a final step in understanding all
properties of LMO, certainly a significant amount work is
going to be necessary, we believe that future experimental
findings should be at least cross-examined in a view of our
proposal.

The ideas put forward in this paper have also some
further reaching consequences. For the material under
consideration, they pave the way to explore the origin of
superconducting phase that is present at even lower tem-
peratures. Current work substantiates the link between 1D
physics and SC order. For the general problem of dimen-
sional cross-over, present in every quasi-1D material (or
structure), it emphasizes so far neglected role of multi-
orbital physics, when the system may cross-over in an
orbital-selective manner. We also gain knowledge about
Mott transitions as LMO provides an illustrative example
where auxiliary degrees of freedom may help the system
to achieve commensurability and open up a gap.

Note added in proof During final preparation of this
manuscript, the author has become aware of a very re-
cent experimental work, reference [48]. The picture put
forward in the conclusion of this paper, about the presence of
fluctuating magnetic moments on atomic scale that change
their character at T0, goes exactly along the lines of theoretical
ideas put forward in current paper.
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Appendix A: Spin-orbital content
of an exciton

Since the spin-orbit coupling is substantial (ΔLS =
100 meV on a molybdenum atom [37]), in order to under-
stand excitonic wavefunctions we need to consider eigen-
states of total angular momentum J . The case J = 0 is
the simplest (nodeless), while J = 2 is the most compli-
cated. In an isotropic system, without a crystal lattice, a
state with an angular momentum J = 2 would be five-fold
degenerate. One should realize that our system is not only
highly anisotropic, with a preference for wavefunctions to
be spread within the b-c plane, but also unidirectional in
the sense that each electron/hole have one direction along
which they strongly prefer to move [18,31]. (Please note
that here we discuss the wavefunction that corresponds
to relative motion of electron and hole that are forming
an exciton.) This clearly manifests in ARPES where three
sets of unwrapped bands were observed [6],7 each for a dif-
ferent t2g orbital. In such a case the wavefunctions should
have an elongated shape, very much like Jz = 0 spherical
harmonics. To be precise there are two possibilities of pre-
ferred orientations of these rods one for dxz and another
for dyz. Mathematically a difference between them can
be ascribed to different phases of an ad-mixed |Lz| = 1
component. A naive guess would be that either one of
these two (or some linear combination that favours an in-
termediate direction) would eventually become a ground
state. However, in the hamiltonian there are no symmetry
breaking terms, instead there may be substantial disorder
(octahedron tilting and dynamic coupling to dxy orbitals)
that restores the symmetry. Then we exclude spontaneous
symmetry breaking towards these unidirectional “stripe-
states”. On the other hand, when the exciton’s energy is
close to EF then Lz = 0 (the dxy states) are available at
low energy cost as well as Lz = ±1 so one can act with L̃±
operators with no energy cost. Then an isotropic ground
state is expected to be resonance of many Fock states (ten-
sor products) spanned over eight available Hilbert states
(it can be thought as a purely local analogue of the fa-
mous RVB state). [Two states are from rods orientation,
two from electron/hole (Nambu) degree of freedom and
two from spin.] Most likely, in a low symmetry environ-
ment of LMO, there is only one non-degenerated excitonic

7 Jim Allen’s private communication.
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state a(x), but it is unusual since the Jz fluctuations are
incorporated in its construction. The Holstein-Primakoff
mapping (used also in Sect. 2.4) indicates that this con-
struction is possible, creation of boson is then equivalent
to J+ operator. Physically, creating an exciton implies a
creation of the fluctuating orbital-state.
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