Skip to main content
Log in

Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals’ in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present article, with potent applications in the field of quantum information processing, provide a deeper understanding of the electronic von Neumann entropy and hybrid entanglement that occurs in two-dimensional nanodots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Audretsch, Entangled Systems: New Directions in Quantum Physics (John Wiley & Sons, Germany, 2007)

  2. W. Casteels, C. Ciuti, Phys. Rev. A 95, 013812 (2017)

    Article  ADS  Google Scholar 

  3. Y.H. Su, A.M. Chen, C. Xiang, H. Wang, C.-J. Xia, J. Wang, J. Stat. Mech. 123102 (2016)

  4. M. Salerno, V. Popkov, Phys. Rev. E 87, 022108 (2013)

    Article  ADS  Google Scholar 

  5. S.S. Masood, A. Miller, Int. J. Eng. Sci. Innovative Technol. 4, 8 (2015)

    Article  Google Scholar 

  6. T. Westermann, U. Manthe, J. Chem. Phys. 136, 204116 (2012)

    Article  ADS  Google Scholar 

  7. L.J. Pereira, T.R. de Oliveira, Front. Phys. 4, 51 (2016)

    Article  Google Scholar 

  8. R. Safaiee, M.M. Golshan, Eur. Phys. J. B 83, 457 (2011)

    Article  ADS  Google Scholar 

  9. M.A. Nielson, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  10. W. Belzig, A. Bednorz, Phys. Status Solidi B 251, 1945 (2014)

    Article  ADS  Google Scholar 

  11. R. Safaiee, F. Aghel, M.M. Golshan, J. Stat. Mech. 023101 (2016)

  12. A.-B. Mohamed, H. Eleuch, Eur. Phys. J. D 69, 191 (2015)

    Article  ADS  Google Scholar 

  13. M. Sahrai, B. Arzhang, D. Taherkhani, V. Tahmoorian Askari Boroojerdi, Physica E 67, 121 (2015)

    Article  ADS  Google Scholar 

  14. C.H. Lin, Y.C. Lin, Y.K. Ho, Phys. Rev. A 87, 022316 (2013)

    Article  ADS  Google Scholar 

  15. E. Räsänen, T. Blasi, M.F. Borunda, E.J. Heller, Phys. Rev. B 86, 205308 (2012)

    Article  ADS  Google Scholar 

  16. A. Streltsov, Quantum Correlations Beyond Entanglement and Their Role in Quantum Information Theory (Springer, London, 2015)

  17. G.B. Furman, V.M. Meerovich, V.L. Sokolovsky, Quantum Inf. Process. 8, 283 (2009)

    Article  Google Scholar 

  18. R.F. Barbarona, F.N.C. Paraan, J. Stat. Mech. 053104 (2016)

  19. B.K. Nikolić, L.P. Zârbo, S. Welack, Phys. Rev. B 72, 075335 (2005)

    Article  ADS  Google Scholar 

  20. P. Busz, P. Rożek, D. Tomaszewski, J. Martinek, Acta Phys. Pol. A 127, 490 (2015)

    Article  Google Scholar 

  21. F. Nichele, S. Hennel, P. Pietsch, W. Wegscheider, P. Stano, P. Jacquod, T. Ihn, K. Ensslin, Phys. Rev. Lett. 114, 206601 (2015)

    Article  ADS  Google Scholar 

  22. J.M. Riley, F. Mazzola, M. Dendzik, M. Michiardi, T. Takayama, L. Bawden, C. Granerød, M. Leandersson, T. Balasubramanian, M. Hoesch, T.K. Kim, H. Takagi, W. Meevasana, Ph. Hofmann, M.S. Bahramy, J.W. Wells, P.D.C. King, Nat. Phys. 10, 835 (2014)

    Article  Google Scholar 

  23. T. Otsuka, E. Abe, Y. Iye, S. Katsumoto, Phys. Rev. B 79, 195313 (2009)

    Article  ADS  Google Scholar 

  24. J.T. Barreiro, T.C. Wei, P.G. Kwiat, Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  25. C.X. Zhang, B. Guo, G.M. Cheng, J.J. Guo, R.H. Fan, Sci. China: Phys. Mech. Astron. 57, 2043 (2014)

    Article  ADS  Google Scholar 

  26. X.L. Wang, X.D. Cai, Z.E. Su, M.C. Chen, D. Wu, L. Li, N.L. Liu, C.Y. Lu, J.W. Pan, Nature 518, 516 (2015)

    Article  ADS  Google Scholar 

  27. R. Ionicioiu, A.E. Popescu, New J. Phys. 7, 120 (2005)

    Article  ADS  Google Scholar 

  28. J.N. Ecksteina, J. Levy, MRS Bull. 38, 783 (2013)

    Article  Google Scholar 

  29. R. Safaiee, N. Foroozani, M.M. Golshan, J. Stat. Mech. P02038 (2009)

  30. G.M. Nikolopoulos, I. Jex, Quantum State Transfer and Network Engineering (Springer, Berlin, Heidelberg, London, 2014)

  31. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  32. C. Kloeffel, D. Loss, Annu. Rev. Condens. Matter Phys. 4, 51 (2013)

    Article  ADS  Google Scholar 

  33. M. Leijnse, K. Flensberg, Phys. Rev. Lett. 107, 210502 (2011)

    Article  ADS  Google Scholar 

  34. G. Chen, Z. Diao, J.U. Kim, A. Neogi, K. Urtekin, Z. Zhang, Int. J. Quantum Inf. 4, 233 (2006)

    Article  Google Scholar 

  35. G. Burkard, D. Loss, Phys. Rev. Lett. 88, 047903 (2002)

    Article  ADS  Google Scholar 

  36. H.R. Wei, F.G. Deng, Sci. Rep. 4, 7551 (2014)

    Article  Google Scholar 

  37. J.M. Elzerman, R. Hanson, L.H.W. van Beveren, S. Tarucha, L.M.K. Vandersypen, L.P. Kouwenhoven, Lect. Notes Phys. 667, 25 (2005)

    Article  ADS  Google Scholar 

  38. A.J. Leggett, B. Ruggiero, P. Silvestrini, Quantum Computing and Quantum Bits in Mesoscopic Systems (Kluwer Academic/Plenum Publishers, New York, 2004)

  39. S. Bandyopadhyay, J. Atulasimha, Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing (John Wiley & Sons, United Kingdom, 2016)

  40. R. Safaiee, F. Aghel, M.M. Golshan, Superlatt. Microstruct. 67, 221 (2014)

    Article  ADS  Google Scholar 

  41. S. Zhang, R. Liang, E. Zhang, L. Zhang, Y. Liu, Phys. Rev. B 73, 155316 (2006)

    Article  ADS  Google Scholar 

  42. S. Debald, C. Emary, Phys. Rev. Lett. 94, 226803 (2005)

    Article  ADS  Google Scholar 

  43. It is worth mentioning that the effect of the two spin-orbit couplings, solely or together, has been studied extensively in different contexts. Reference [39] is resourceful in bibliographies regarding this subject. Also see, J. Capps, D.C. Marinescu, A. Manolescu, Phys. Rev. B 93, 085307 (2016)

  44. W. Wang, J.Y. Fu, Physica B 482, 14 (2016)

    Article  ADS  Google Scholar 

  45. T.C. Wei, K. Nemoto, P.M. Goldbart, P.G. Kwiat, W.J. Munro, F. Verstraete, Phys. Rev. A 67, 022110 (2003)

    Article  ADS  Google Scholar 

  46. V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Bandyopadhyay, M. Cahay, Introduction to Spintronics (CRC Press, Boca Raton, FL, 2008)

  48. M. Trushin, Transport in low dimensional systems with spinorbit coupling (Ph.D. Thesis, University of Hamburg, 2005)

  49. Y.A. Bychkov, E.I. Rashba, JETP Lett. 39, 78 (1984)

    ADS  Google Scholar 

  50. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  51. J.J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, 1967)

  52. S. Debald, Interaction and confinement in nanostructures: spin-orbit coupling and electron-phonon scattering (Ph.D. Thesis, University of Hamburg, 2005)

  53. R. Safaiee, M.M. Golshan, Superlatt. Microstruct. 60, 540 (2013)

    Article  ADS  Google Scholar 

  54. R. Safaiee, M.M. Golshan, N. Foroozani, J. Stat. Mech. P11014 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Safaiee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaiee, R., Golshan, M.M. Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement. Eur. Phys. J. B 90, 121 (2017). https://doi.org/10.1140/epjb/e2017-70732-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70732-5

Keywords

Navigation