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Abstract. The quantum transport of electrons in a wire of localized dots by hopping, interaction and dis-
sipation is calculated and a representation by an equivalent RCL circuit is found. The exact solution for
the electric-field induced currents allows to discuss the role of virtual currents to decay initial correlations
and Bloch oscillations. The dynamical response function in random phase approximation (RPA) is calcu-
lated analytically with the help of which the static structure function and pair correlation function are
determined. The pair correlation function contains a form factor from the Brillouin zone and a structure
factor caused by the localized dots in the wire.

1 Introduction

The physics and the industrial usage of chains of molecules
has been a subject of immense activity during last
years [1–4]. Let us mention only some selected examples.
Aspects of carbon nanotubes can be recast into a circuit
model [5,6] due to the nearly found perfect electron-hole
symmetry in carbon nanotube quantum dots [7]. One can
model adiabatic charge pumping in such quantum nan-
otube dots by the coupling to external leads as well as
considering the tunneling between the dots exposed to
an electric field [8–10]. The transport and polarization ef-
fects of quantum point contacts up to wires are investi-
gated with extensive engineering tools [11]. The dissipa-
tive transport through such tight-binding lattices shows
even a current inversion by a nonlinearly driven field [12].
A high-frequency electric field can induce artificial ferro-
magnetism in a tight-binding lattice [13]. The underlying
tight-binding models are even used for modeling branched
networks [14].

This motivates to investigate the simpler problem of
a chain of dots and their transport properties and how
far it can be modeled by an equivalent circuit. Mostly
quantum dots are considered with an internal quantum
structure [15–17], e.g. the coupling of quantum dots to
superconducting leads [18]. For an overview about recent
developments see [19]. Here we will neglect all internal fea-
tures of the dots and model simply the quantum transport
of electrons through a chain of localized dots which means
we consider the confinement classically. One dimensional
scattering with confinement has been treated in [20]. An

a e-mail: morawetz@fh-muenster.de

overview of one-dimensional Fermi can be found in [21,22].
Here we restrict ourselves to localized dots which are es-
sentially different from free-moving particles like in metal-
lic wires [23] or disordered obstacles treated usually within
Landauer-Büttiker formalism [24]. The localized point
contacts possess a rich magneto-transport behavior [25]
and even without disorder, cold atoms in mesoscopic wires
show resistivity [26]. Since mostly the continuum limit is
used, we will investigate here the influence of a finite num-
ber of localized states.

We want to investigate the extensively studied tight-
binding Hamiltonian with interaction and external elec-
tric fields with respect to localized positions of interact-
ing particles. We will show that the transport through
such structures can be replaced by an equivalent RCL cur-
rent with resistivity, capacitance and inductance uniquely
determined by a single microscopic quantum parameter.
Therefore one can shape a desired transport by choos-
ing molecules and materials for the dots according to this
parameter, the latter being given in terms of the coupling
constant between the dots expressed by the nearest neigh-
bor hopping energy J , the interaction between the elec-
trons V , the spacing of dots a and the effective electron
density over all dots n.

A simple estimate allows already to get some insight
into this idea [5]. The energy level spacing between quan-
tum states in a 1D chain of length D can be expressed as

δE =
dεq

dq
δq = 2Ja sin (qa)

2π

D
(1)

assuming a dispersion εq = −2J cos (qa) with wave-
length q. This energy cost can be understood as realized
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by an effective capacitance δE = e2/C such that one de-
duces the quantum capacitance per length

C

D
=

e2

2π�vF
. (2)

Here we introduced the “Fermi” velocity of non-
interacting electrons

vF =
2Ja

�
sin (qF a)|qf =π/2a =

2aJ

�
(3)

with the second expression valid for the quantum dots at
half filling where εqF = 0.

The kinetic inductance L can be found in a similar
way [5]. We consider the potential difference ΔU between
right and left leads. The net increase of kinetic energy
is the product between the excess number of electrons in
the left versus the right leads, eΔU/δE, and the energy
carried, eΔU/2, which provides

ΔE =
e2ΔU

δE

ΔU

2
=

e2ΔU2D

2hvf
=

I2hg2D

2e2vf
(4)

where we used (1) and that the current I is given by the
ratio of the potential and the resistance

R =
h

e2
g. (5)

All interaction effects are condensed in the g-factor. Com-
paring the kinetic energy (4) with the one expressed by the
inductance Ekin = 1

2LI2 we deduce the kinetic inductance
per length [5]

L

D
=

h

e2vF
g2. (6)

The effective Fermi velocity vint
F for interacting electrons

is given by the eigenfrequency ω0 = 1/
√

LC times the
length D of the system yielding

vint
F =

1
g
vF (7)

which is different from the non-interacting one (3) by the
g-factor. In this paper we will find the g-factor

g =
e2ω0

hα
(8)

where the collective frequency ω2
0 = (bq0 + 2nVq0)bq0 is

given in terms of the interaction potential Vq0 and bq0 =
4J sin2 q0/2 at the wavelength q0 of the external electric
field. The quantum parameter finally becomes

α =
ne2

m

sin q0
2

q0
2

(9)

with the effective mass m = �
2/2Ja2 and lattice spac-

ing a. In this way we can shape the capacitance (2), the

inductance (6) and the resistivity (5) by choosing appro-
priate materials with hopping parameter J , interaction V ,
density n and spacing a of the material.

Considering the power due to kinetic energy,

P = IU =
d

dt
Ekin = LI

dI

dt
, (10)

shows that the current İ = U/L grows linearly with time
for a step-like switch-on of the potential U . This is what
has been observed in [27].

We will investigate a chain of quantum dots now in a
potential difference causing a homogeneous electric field.
This will provide us with exactly this ballistic property of
the current independent of interaction. This is in agree-
ment with the observation of a transition from Ohmic to
ballistic transport in quantum point contacts [28]. If one
uses an inhomogeneous electric field e.q. by a spatially
modulated wave one obtains a nontrivial current which
can be replaced by the circuit properties above.

The outline of the paper is as follows. In the next chap-
ter we shortly review the exact expression for currents
of electrons hopping between localized levels in electric
fields. With the help of the exact solution of the hop-
ping Hamiltonian we discuss the Bloch oscillations. In the
third chapter we consider interactions in mean field and
relaxation-time approximation with imposed conservation
laws. This chapter is divided into the decay of initial cor-
relations and the interactions. The final results are the dy-
namical response function and the current. The latter one
is shown to be represented by an equivalent circuit with
a resistivity, capacitance and inductance found in terms
of microscopic hopping, interaction and relaxation time.
In the fourth chapter the pair correlation function is dis-
cussed by the analytical structure function for arbitrary
temperatures.

2 Chains in electric field

The 1D tight-binding Hamiltonian of cites |n〉 in a time-
dependent external electric field E(t) reads

Ĥ =
∑

nn′
H(n − n′)|n〉〈n|′ − ea

∑

n

nEn(t)|n〉〈n| (11)

where the position operator is

x̂ =
∑

n

na|n〉〈n| (12)

with the lattice distance a. The time-dependent
Schrödinger equation is solved by the superposition of

|Ψ〉 =
∑

n

cn|n〉 (13)

where the coefficients cn obey

i�∂tcn =
∑

n′
H(n − n′)cn′ − eEn(t)a n cn. (14)
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In the following we understand the dimensionless momen-
tum p in units of �/a and the wave vector k in units of
1/a. The Fourier transform according to

cp =
∑

n

e−ipncn, cn =

2π∫

0

dp

2π
eipncp (15)

translates (14) into

i�∂tcp = εpcp − iea

2π∫

0

dp̄

2π
Ep−p̄(t)∂p̄cp̄ (16)

with

εp =
∑

n

e−ip(n−n′)H(n − n′) = −2J cos p (17)

for nearest-neighbor hopping H(n − n′) = −J(δn′,n+1 +
δn′,n−1).

A homogeneous electric field simplifies the algebra con-
siderably and (16) reads

i�∂tcp = εpcp − ieE(t)a∂pcp. (18)

Introducing y(p, t) = ln [cp(t)], this equation (18) can be
solved exactly by an implicit representation F [t, p, y(p, t)]
with

Ft + eE
a

�
Fp − i

�
ε(p)Fy = 0. (19)

Since the gradient is perpendicular to any equal-potential
line, the characteristics of a line in the solution plane reads

1 : eE
a

�
:
(
− i

�
ε(p)

)
= ṫ : ṗ : ẏ (20)

from which we obtain the two characteristics

ξ1 = p − a

�

t∫
eE(t̄)dt̄

ξ2 = y +
i

�

t∫

0

dt̄ ε

⎡

⎣p +
a

�

t̄∫

t

eE(t′)dt′

⎤

⎦ (21)

such that any function of these two constants are a so-
lution of the partial differential equation (19). Given an
initial value cp(t = 0) = c0[p] the solution of (18) reads
finally

cp(t) = c0

⎡

⎣p− a

�

t∫

0

eE(t̄)dt̄

⎤

⎦ e
− i

�

t∫
0

dt̄ ε

[
p+ a

�

t̄∫
t

eE(t′)dt′
]

(22)

which contains all known special cases found in the lit-
erature. The constant electric field turns (22) into Bessel
functions as obtained in [10]. Mean square displacements
are calculated in [9] with the intention of localizations.

With the exact solution (22) we can calculate the mean
quantum mechanical current

ẋ = 〈Ψ | i
�
[Ĥ, x̂]|Ψ〉 = J

i

�
a

∑

n

(c+
n cn+1 − c+

n+1cn)

= 2J
a

�
Im

∑

n

c+
n cn+1 = 2J

a

�
Im

2π∫

0

dp

2π
c+
p cpeip

= 2
a

�
J

2π∫

0

dp

2π
c+
p cp sin p (23)

which is doubtlessly a real quantity since c+
p cp = (c+

p cp)+.
The many-body averaging leads to the momentum-

dependent density fp = 〈c+
p cp〉 with the zero center-

of-mass momentum q. We neglect thermal effects and
consider here only localized particles. We assume dots
occupying places on a lattice with a spatial distribution
n

∑N
l=−N δ(r − la) which Fourier transforms to the mo-

mentum distribution

fp = n

N∑

l=−N

e−ilp = n
sin (N + 1/2)p

sin(p/2)
. (24)

With the help of the exact solution (22) and abbreviating

E = a
�

t∫
0

eE(t′)dt′ one calculates the current (23) as

〈ẋ〉 = 2J
a

�

2π+E∫

E
sin (p + E)fp = 2J

a

�

2π∫

0

sin (p + E)fp

= 2J
a

�
n sin E = 2J

a

�
n sin

⎛

⎝a

�

t∫

0

eE(t′)dt′

⎞

⎠. (25)

In the second step, we have used the Brillouin-zone (2π)-
periodicity of fp and observe that its integral over sin p
is zero and the cos p-weighted integral leads to the same
value as the normalization itself.

As a consequence, one has inevitable Bloch oscillations
which for constant fields take the known form

〈ẋ〉 = 2nJ
a

�
sin

(
e
a

�
Et

)
. (26)

In linear response (25) leads to

〈ẋ〉 = 2nJ
a2

�2

t∫

0

E(t′)dt′ =
n

m

t∫

0

E(t′)dt′ (27)

where the effective mass near the band edge has been used
according to εp = −2J cos(pa/�) ≈ −2J + J a2

�2 p2. Equa-
tion (27) describes nothing but the free ballistic motion in
a time-varying homogeneous electric field. In other words
the chain of quantum dots with only hopping between
neighbors leads to ballistic currents.
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3 Currents and response

3.1 Hopping and decay of initial correlations

Let us inspect how this situation changes if we add inter-
actions and consider the linear response. First we reformu-
late the hopping situation within the kinetic theory and
then we investigate the interactions. Therefore we search
for the Wigner function ρ1,2 = 〈1|ρ̂|2〉 and represent the
Heisenberg equation

i�̇̂ρ = [Ĥ, ρ̂] (28)

in matrix form for the interaction-free case,

i�ρ̇1,2 = (ε1 − ε2)ρ1,2 +
∑

3

(U1−3ρ3,2 − U3−2ρ1,3) (29)

where U is the external potential. In linear response
around the equilibrium ρ1,2 = f1δ1,2 and using momen-
tum representation 〈1| = 〈p+ q/2| and 〈2| = 〈p− q/2| one
gets for (29)

i� ˙δρpq = Δεδρpq + UqΔf (30)

with

Δε = εp+q/2 − εp−q/2 = 4J sin (q/2) sin p

Δf = fp+q/2 − fp−q/2. (31)

Equation (30) is readily solved as

δρpq = ρq(0)e−
i
�

Δεt +
i

�

t∫

0

dt̄Uq(t − t̄)e−
i
�

Δεt̄Δf

= ρq(0)e−
i
�

Δεt +
Δf

Δε

(
1 − e−

i
�

Δεt
)

Uq (32)

with the second line for time-independent external
potentials.

For large total number of dots N which we will consider
first, one gets from (24)

fp = lim
N→∞

n
sin (N + 1

2 )p
sin(p

2 )
= lim

N→∞
n

sin (N + 1
2 )p

p
2

p
2

sin(p
2 )

= lim
N→∞

n2πnδ(p)
p
2

sin(p
2 )

= 2πnδ(p) (33)

for the interval p ∈ (0, 2π) and fp are 2π periodic. We
can consider this as a model distribution for completely
momentum-localized states like in Bose-Einstein conden-
sation. This renders the momentum integration trivial.
One obtains from (32) for the density

δnq(t) = ρq(0)J0

[
4Jt sin

( q

2

)]

− 2n

t∫

0

dt̄Uq(t − t̄) sin
[
4Jt̄ sin2

(q

2

)]
(34)

5 10 15 20
4Jt

0.4

0.3

0.2

0.1

Δjinit 2iJ

Fig. 1. The imaginary current (36) integrated over the
Brillouin zone wave vectors which is connected to the decay
of initial correlations.

with the Bessel function J0. The first part gives the decay
of initial density and the second part the change due to
the external potential. The decay of initial correlations is
present even without an external potential and any inter-
action. They decay due to the Bessel function with 1/

√
t.

This is a result of quantum interference as it will be ex-
pressed by the associated current density which turns out
to be purely imaginary.

The total current according to (23) is

δj(t) = 2
a

�
J

∞∫

−∞

dq

2π

2π∫

0

dp

2π
δρpq(t) sin p =

∞∫

−∞

dq

2π
jq(t)

jq =
a

�

2π∫

0

dp

2π
∂pεpδρpq. (35)

It is convenient to discuss the initial and potential parts
separately. The first part of (32) leads to no real current
density as one can see from

jinit
q (t) = 2J

a

�

2π∫

0

dp

2π
sin(p)ρq(0)e−ix sin p

= 2i
a

�
Jρq(0)∂x

2π∫

0

dp

2π
e−ix sin p

= 2i
a

�
Jρq(0)J ′

0[x] = −2i
a

�
Jρq(0)J1[x] (36)

with x =
√

4Jbt and b = 4J sin2(q/2). This result means
that the initial distribution decays with an imaginary cur-
rent density and the Brillouin-zone-integrated imaginary
current (0, 2π) is plotted in Figure 1.

Though the initial density decays with 1/
√

t in (34), it
is not connected with a real current. Indeed, the total inte-
grated current density for q ∈ (−∞,∞) is zero. Therefore
we interpret this as quantum correlation decay.

In contrast, the second part of (32) in (35) due to the
external perturbation will lead to a real current. Lets as-
sume a time-varying electric field and its potential in one

dimension being U(x) = −e
x∫
0

Ex′(t)dx′. A homogeneous

http://www.epj.org
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electric field in a chain of length D has the potential

Uq = lim
D→∞

a

D/2a∫

−D/2a

dxe−iqx[−eE(t)x]

= −2iaeE(t)∂q lim
D→∞

sin q D
2a

q
= −i2πaeE(t)∂qδ(q)

(37)

while an inhomogeneous electric field with wavelength q/�

possesses the potential

Uq = eai
Eq(t)

q
. (38)

Using the homogeneous potential (37) in the second part
of (32), the current (35) is easily evaluated. Since we are
interested in the current at position x = 0 we integrate
over q and obtain

4
a2

�
J

∞∫

−∞
dqδ′(q)

2π∫

0

dp

2π
sin p

t∫

0

dt̄ eE(t̄)Δfe−
i
�
4(t−̄t)Jsin q

2 sinp

= −2
a2

�
J

∞∫

−∞
dqδ(q)

2π∫

0

dp

2π
sin p

t∫

0

dt̄eE(t̄)∂p

(
fp+q

2
+fp−q

2

)

= 2
a2

�
J

2π∫

0

dp

2π
fp cos p

t∫

0

dt̄eE(t̄) = 2
a2

�
Jn

t∫

0

dt̄eE(t̄)

(39)

where twice partial integrations have been performed and
we note that the cos-weighted density equals the density n
for the distribution (24).

We obtain again the result that a chain of quantum
dots in a homogeneous field with hopping in-between the
dots will lead to a ballistic current as it was observed
in [27]. This is valid for finite and infinite chains. It is not
hard to see that even a finite-length-D potential in (37)
does not alter this result.

3.2 Hopping and interaction

Next we look into interacting electrons hopping in a chain
of dots. Therefore we consider the Hamiltonian

Ĥ =
∑

p

εpĉ
+
p ĉp +

1
2

∑

p,k,q

Vq ĉ
+
p+q ĉ

+
k−q ĉk ĉp (40)

which has the dispersion (17) and the electrons inter-
act with the potential Vq . The kinetic equation is writ-
ten again with the help of (28) in momentum representa-
tion analogously to (30) but now with interaction Vq. Its
Laplace transform reads [29]

(
s +

1
τ

+ iΔε

)
δf − δf0 = iΔf(Uq + δnVq)

+
Δf

Δε

δn

τ
2π∫
0

dp
2π

Δf
Δε

(41)

with the meanfield approximation and a density-
conserving relaxation-time approximation a lá
Mermin [30,31]. It can be extended to include more
conservation laws [32,33]. The notation of (31) is used.
Solving and integrating over p, the density change due to
the external field Uq reads

δnq =
ΠSUq − iδf0QS

1 − VqΠS − 1
τS

(
1 − ΠS

Π0

) (42)

where we use S = s + 1
τ . We have introduced the RPA

polarization and initial polarization

ΠS =

2π∫

0

dp

2π

Δf

Δε − iS

QS =

2π∫

0

dp

2π

1
Δε−iS

=
i√

S2+4Jb
� � iJ0(

√
4Jbt)e−

t
τ

(43)

with b = 4J sin2 q/2. We gave the Laplace back trans-
formation into time of the initial polarization in terms of
the Bessel function J0. The corresponding current density
according to (23) reads

δjq = δjinit
q + δjc

q (44)

with the current due to initial correlations

δjinit
q = −2iJ

a

�
δf0

⎡

⎣Qs
S+QΠs

S

Vq− 1
τSΠ0

1−VqΠS− 1
τS

(
1−ΠS

Π0

)

⎤

⎦,

(45)

and the modified polarization function

Πs
S =

2π∫

0

dp

2π
sin p

Δf

Δε − iS

Qs
S =

2π∫

0

dp

2π

sin p

Δε − iS
=

√
4Jb√

S2 + 4Jb(
√

S2 + 4Jb + S)

� �J1(
√

4Jbt)e−
t
τ . (46)

Note that Πs
0 = 0 due to symmetries. We see that the first

part of (45) is just the free decay of initial correlations as
we had seen in (36).

The current due to the external potential Uq reads now

δjc
q = 2J

a

�
Uq

⎡

⎣Πs
S + Π Πs

S

Vq − 1
τSΠ0

1 − VqΠS − 1
τS

(
1 − ΠS

Π0

)

⎤

⎦ .

(47)

It is easy to integrate over q to get the total current for a
homogeneous electric field with the potential (37) for the
dispersion (17). With the help of

Δf

Δε

∣∣∣∣
q=0

=
f ′

p

2J sin p
; ∂q

Δf

Δε

∣∣∣∣
q=0

= 0; (48)
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the current due to the homogeneous external field is just
the free ballistic one

δjc
q = 2

a2

�
JeE(s)n

1
S

� �2
a2

�
J

t∫

0

dt̄eEt−t̄e−
t̄
τ (49)

as obtained for non-interacting chains except the folding
with the relaxation which describes exactly the dissipative
decay of the current.

Further we want to consider the case of large chains
which allows to use (33) with the help of which the polar-
izations (43) and (46) take the simple forms

ΠS = −2n
b

S2 + b2

Πs
S = −2in sin

(q

2

) S

S2 + b2
(50)

and the currents (45) and (47) become

δjinit
q = −2iJ

a

�
δf0

[ √
4Jb√

S2 + 4Jb(
√

S2 + 4Jb + S)

+
sin

(
q
2

)
√

S2 + 4Jb

2nVqS + b
τ

b2 + S2 + 2nVqb − S
τ

]
(51)

and

δjc
q = −4iJ

a

�
nEq sin

(q

2

)[
S

b2 + S2

− b

S2 + b2

2nVqS + b
τ

b2 + S2 + 2nVqb − S
τ

]
. (52)

The currents Laplace-transform back into time

δjinit
q = −2iJ

a

�
δf0

[
J1(

√
4Jbt)e−

t
τ + sin

q

2
e−

t
τ

×
t∫

0

dt̄J0

(√
4Jb(t− t̄)

)

×
(

2nVq cos γt̄+(nVq−b)
sinγt̄

2γτ

)
e

t̄
2τ

]
(53)

and

δjc
q = −4iJ

a

�
nUq sin

q

2
e−

t
2τ

(
cos γqt − sin γqt

2γqτ

)
(54)

with γ2
q = b2

q + 2nVqbq − 1/4τ2.
It is now interesting to investigate the case of an inho-

mogeneous field (38) which we consider for a single-mode
wavelength

Uq = 2πiEq0

a

q0
δ(q − q0). (55)

This means we can replace the wavelength q in (47) just by
q0 and divide the result by q0. For the one-mode electric

field with the potential (55) one can integrate the current
density over wave vectors and multiply with e to get the
total charge current. We represent it in terms of the resis-
tance in frequency space which means we replace in the
Laplace transform of (52) remembering S = −iω + 1/τ
and δJc = δjc

q=0 to get

Rc =
Eq0

δJc
=

1
τ + i

(
bq0 (bq0+2nVq0 )

ω − ω
)

α
(56)

with

α = 2e2J
a2n

�2

sin q0
2

q0/2
=

ne2

m

sin q0
2

q0
2

(57)

and the effective mass for free particles m = �
2/2Ja2.

We can equivalently replace the chain of quantum dots
by a damped oscillator circuit with the Ohmic resistance
per length

R−1 = τα =
ne2τ

m

sin q0
2

q0
2

. (58)

The finite damping leads to an inverse resistivity R per
length in 1D which is equivalent to the known conductiv-
ity except the modulation factor due to the applied wave
sin q0/2

q0/2 .
From (56) we read-off also the equivalent inductance

RL = −iωL per length

L−1 = α (59)

and the equivalent capacitance RC = i/ωC per length

C =
α

ω2
0

. (60)

Here we have introduced the eigenfrequency for undamped
electrons τ → ∞

ω2
0 =

1
LC

= (bq0 + 2nVq0)bq0 . (61)

In order to make the connection to the introduction we
can use the replacement

g =
e2ω0

2π�α
; vf = gω0D =

e2ω2
0D

2π�α
(62)

to get the kinetic inductance and quantum capacitance.
Equations (57)–(62) are the main results of this paper.
We have derived the expression of the g-factor for the
interacting case which results into the determination of all
equivalent RCL circuit measures by a single microscopic
parameter (57).

4 Pair correlation function

It is also possible to give an analytic expression for
the structure factor when we consider the case of large
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chains which had already resulted into the simple distri-
bution (33) and the response functions (43). The finite-
temperature structure factor is given in terms of the re-
sponse function χ = δnq/Uq as

Sq = − 1
n

∞∫

−∞

dω

π

Imχ

1 − e−βω
(63)

with β = 1/T . We consider the temperature effects in the
response function as the temperature of the surrounding
bath though we have considered perfectly localized dots
without thermal motion. Using (50) in (42) one obtains
without initial correlations

Sq = Im
ibq

π

1
τ +i∞∫

1
τ −i∞

ds
1

(1−e−iβ(s−1
τ ))(b2

q+nbqV +s2− s
τ )

= Im
bq

2πγq

[
Ψ

(
− β

4πτ
+

iβγq

2π

)
−Ψ

(
− β

4πτ
− iβγq

2π

)

−2πi
sinh βγq

coshβγq − cos β
2τ

]
(64)

with the DiGamma function Ψ(x) = Γ ′/Γ coming from
the residue of the Bose function and the remaining parts
from the residua of the quadratic denominator. We have
used γ2

q = b2
q + 2nV bq − 1/4τ2 and if γ2

q < 0 one has to
use γq = iγ̄q. The zero-temperature result is analytically
as well and reads

Sq(T = 0) = Im
bq

2πγq
ln

1 + 2iγqτ

1 − 2iγqτ
. (65)

The pair correlation function is then given by

gr = 1 +
1

2πna

∞∫

−∞
dqeiqr(Sq − 1)

= 1 +
1

2πna

∞∫

−∞
dq cos (qr)(Sq − 1)

= 1 +
1

2πna
FN (r)

2π∫

0

dq cos (qr)(Sq − 1) (66)

where we used the periodicity of Sq and integrate over
2N +1 sites which results into a structure factor FN (r) =
sin [πr(2N + 1)]/ sin [πr] in front of the integration over
one Brillouin zone. The structure factor is a-periodic
FN (r) = FN (r + a) with maxims at r = na and the
main maxim at FN (0) = 2N + 1. We present the pair
correlation function in Figure 2 for different length of the
wire. One sees that the effect of a larger number of dots is
a modulation of the first-Brillouin-zone result with max-
imal modulation amplitude at the dot position na. In-
terestingly every time when the first-Brillouin-zone pair
correlation function crosses unity, no modulation appears.

0.5 1.0 1.5 2.0 2.5 3.0
r�a�

�0.5

0.5

1.0

g2

N�41
N�7
N�1

Fig. 2. Pair correlation function (66) for different sites, a hop-
ping strengths of J = 0.001T , interaction V = 1aT , and relax-
ation time τ = 0.3�/T , each in units of temperature T .

0.5 1.0 1.5 2.0 2.5 3.0
r�a�

0.2
0.4
0.6
0.8
1.0
1.2

g2

J�10T

J�1T

J�0.01T

Fig. 3. Pair correlation function (66) of one Brillouin zone for
different hopping strengths and V = 1aT , τ = 0.3�/T .

In the following we restrict to one site N = 1 yielding
the pair-correlation function of one Brillouin zone or form
factor.

In Figure 3 we plot the dependence of the pair cor-
relation function from one Brillouin zone on the hopping
strength. We see that the typical maxims indicating the
distance of the effective nearest neighbors slightly change
with the hopping strength. A larger hopping strength
leads to a weaker correlation hole at shorter distances and
the pair correlation becomes smoothed out. It counteracts
the correlations. As an artifact of the RPA approximation,
the pair correlation function may become negative as can
be seen in metallic wires [23].

The dependence on the interaction determining the
collective mode (61) and on the relaxation times is much
weaker as demonstrated in the next Figures 4 and 5. The
effect of interaction due to relaxation time as well as in-
teraction affects the pair correlation oppositely than the
hopping. A higher collision frequency and a higher interac-
tion both lead to sharper features in the pair correlation.
Therefore we see the expected result that the dissipative
interaction represented by the relaxation times and the
hopping strength both counteract in the pair correlation
and the interaction leads to a deeper correlation hole.

The dependence on the temperature finally is seen
in Figure 6. Lower temperatures have the same effect as
stronger hopping and lower correlations.
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0.5 1.0 1.5 2.0 2.5 3.0
r�a�

0.2
0.4
0.6
0.8
1.0
1.2

g2

V�1000T

V�10T

V�0.1T

Fig. 4. Pair correlation function (66) for different interactions
and J = 1T , τ = 1�/T .

0.5 1.0 1.5 2.0 2.5 3.0
r�a�

0.2
0.4
0.6
0.8
1.0
1.2

g2

Τ�1�500T��

Τ�1�1T��

Τ�1�0.05T��

Fig. 5. Pair correlation function (66) for different relaxation
times and J = 1T , V = 1aT .

0.5 1.0 1.5 2.0 2.5 3.0
r�a�

0.2
0.4
0.6
0.8
1.0
1.2

g2

T�20T0

T�1T0

T�0.05T0

Fig. 6. Pair correlation function (66) for different tempera-
tures and J = 1T0, V = 1aT0 and τ = 0.3�/T0.

5 Summary

We have considered localized electrons in electric fields
allowing for hopping and interactions. The exact ana-
lytical expressions show Bloch oscillations and ballistic
transport for non-interacting electrons allowing only hop-
ping between dots. Including interactions the correspond-
ing kinetic equation can be solved in linear response and
the currents are calculated analytically. We find that the
transport of electrons in a chain of such dots can be repre-

sented by an equivalent R-C-L circuit. We derive explicit
expressions for the equivalent resistivity, conductance and
inductance in terms of hopping, interaction strength and
relaxation time. The decay of initial correlations is real-
ized by virtual currents. The pair correlation function is
discussed due to the analytic expression for the dynamical
response function. Here the effect of hopping counter-acts
the effect of interactions and collisions. A higher temper-
ature sharpens the feature of the first Brillouin zone. The
number of dots leads to a structure factor inside the pair-
correlation function which modulates the first-Brillouin-
zone correlation function away from the points crossing
unity. This modulation has maxims at the places of the
dots.
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24. M. Büttiker, Phys. Rev. B 33, 3020 (1986)
25. C.W.J. Beenakker, H.V. Houten, Phys. Rev. B 39, 10445

(1989)

26. J.-P. Brantut, J. Meineke, D. Stadler, S. Krinner, T.
Esslinger, Science 337, 1069 (2012)

27. S. Chen, H. Xie, Y. Zhang, X. Cui, G. Chen, Nanoscale 5,
169 (2013)

28. P.C. Main, P.H. Beton, B.R. Snell, A.J.M. Neves,
J.R. Owers-Bradley, L. Eaves, S.P. Beaumont, C.D.W.
Wilkinson, Phys. Rev. B 40, 10033 (1989)

29. K. Morawetz, Phys. Rev. B 90, 075303 (2014)
30. N. Mermin, Phys. Rev. B 1, 2362 (1970)
31. A.K. Das, J. Phys. F 5, 2035 (1975)
32. K. Morawetz, Phys. Rev. B 66, 075125 (2002) [erratum:

Phys. Rev. B 88, 039905(E)]
33. K. Morawetz, Phys. Rev. E 88, 022148 (2013)

http://www.epj.org

	Introduction
	Chains in electric field
	Currents and response
	Pair correlation function
	Summary
	References

