Skip to main content
Log in

Dominant Majorana bound energy and critical current enhancement in ferromagnetic-superconducting topological insulator

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization m zfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on m zfs . The superconducting effective gap is renormalized by a factor η(m zfs ), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of m zfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of m zfs , the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  2. B.A. Bernevig, S.C. Zhang, Phys. Rev. Lett. 96, 106802 (2006)

    Article  ADS  Google Scholar 

  3. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  4. X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  5. T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  6. M. Konig et al., Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  7. L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  8. J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, Phys. Rev. B 81, 184525 (2010)

    Article  ADS  Google Scholar 

  9. J. Nilsson, A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. Lett. 101, 120403 (2008)

    Article  ADS  Google Scholar 

  10. A.R. Akhmerov, J. Nilsson, C.W.J. Beenakker, Phys. Rev. Lett. 102, 216404 (2009)

    Article  ADS  Google Scholar 

  11. L. Fu, C.L. Kane, Phys. Rev. Lett. 102, 216403 (2009)

    Article  ADS  Google Scholar 

  12. J.D. Sau, R.M. Lutchyn, S. Tewari, S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010)

    Article  ADS  Google Scholar 

  13. J. Alicea, Phys. Rev. B 81, 125318 (2010)

    Article  ADS  Google Scholar 

  14. Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)

    Article  ADS  Google Scholar 

  15. F.S. Bergeret, A.F. Volkov, K.B. Efetov, Phys. Rev. Lett. 86, 4096 (2001)

    Article  ADS  Google Scholar 

  16. T.S. Khaire, M.A. Khasawneh, W.P. Pratt, N.O. Birge, Phys. Rev. Lett. 104, 137002 (2010)

    Article  ADS  Google Scholar 

  17. F. Crepin, P. Burset, B. Trauzettel, Phys. Rev. B 92, 100507 (2015)

    Article  ADS  Google Scholar 

  18. N. Read, D. Green, Phys. Rev. B 61, 10267 (2000)

    Article  ADS  Google Scholar 

  19. D.A. Ivanov, Phys. Rev. Lett. 86, 268 (2001)

    Article  ADS  Google Scholar 

  20. A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003)

    Article  ADS  Google Scholar 

  21. H. Kambara, S. Kashiwaya, H. Yaguchi, Y. Asano, Y. Tanaka, Y. Maeno, Phys. Rev. Lett. 101, 267003 (2008)

    Article  ADS  Google Scholar 

  22. Y, Tsutsumi, T. Kawakami, T. Mizushima, M. Ichioka, K. Machida, Phys. Rev. Lett. 101, 135302 (2008)

    Article  ADS  Google Scholar 

  23. S. Tewari, S.D. Sarma, Ch. Nayak, Ch. Zhang, P. Zoller, Phys. Rev. Lett. 98, 010506 (2007)

    Article  ADS  Google Scholar 

  24. M. Sato, Y. Takahashi, S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009)

    Article  ADS  Google Scholar 

  25. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  26. C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013)

    Article  ADS  Google Scholar 

  27. Y. Tanaka, T. Yokoyama, N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009)

    Article  ADS  Google Scholar 

  28. L. Fu, Phys. Rev. Lett. 104, 056402 (2010)

    Article  ADS  Google Scholar 

  29. M. Snelder, M. Veldhorst, A.A. Golubov, A. Brinkman, Phys. Rev. B 87, 104507 (2013)

    Article  ADS  Google Scholar 

  30. J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, Phys. Rev. Lett. 104, 067001 (2010)

    Article  ADS  Google Scholar 

  31. A.I. Buzdin, L.N. Bulaevskij, S.V. Panyukov, Pisma Zh. Eksp. Teor. Fiz. 35, 147 (1982)

    Google Scholar 

  32. P. Burset, B. Lu, G. Tkachov, Y. Tanaka, E.M. Hankiewicz, B. Trauzettel, Phys. Rev. B 92, 205424 (2015)

    Article  ADS  Google Scholar 

  33. K.T. Law, P.A. Lee, T.K. Ng, Phys. Rev. Lett. 103, 237001 (2009)

    Article  ADS  Google Scholar 

  34. J. Nussbaum, T.L. Schmidt, Ch. Bruder, R.P. Tiwari, Phys. Rev. B 90, 045413 (2014)

    Article  ADS  Google Scholar 

  35. R. Vali, H.F. Khouzestani, Eur. Phys. J. B 87, 25 (2014)

    Article  ADS  Google Scholar 

  36. M. Khezerlou, H. Goudarzi, Physica C 508, 6 (2015)

    Article  ADS  Google Scholar 

  37. J.M. Fonseca, W.A. Moura-Melo, A.R. Pereira, Eur. Phys. J. B 86, 481 (2013)

    Article  ADS  Google Scholar 

  38. J. Yuan, Y. Zhang, J. Zhang, Z. Cheng, Eur. Phys. J. B 86, 36 (2013)

    Article  ADS  Google Scholar 

  39. H. Goudarzi, M. Khezerlou, J. Alilou, J. Super. Novel Mag. 26, 3355 (2013)

    Article  Google Scholar 

  40. J.P. Zhang, J.H. Yuan, Eur. Phys. J. B 85, 100 (2012)

    Article  ADS  Google Scholar 

  41. A.M. Clogston, Phys. Rev. Lett. 9, 266 (1962)

    Article  ADS  Google Scholar 

  42. B.S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962)

    Article  ADS  Google Scholar 

  43. J. Hubbard, Proc. Roy. Soc. Lond. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  44. P.G. de Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin, New York, 1966)

  45. B.J. Powell, J.F. Annett, B.L. Gyorffy, J. Phys. A 36, 9289 (2003)

    Article  ADS  Google Scholar 

  46. L. Fu, C.L. Kane, Phys. Rev. B 76, 045302 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Goudarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezerlou, M., Goudarzi, H. & Asgarifar, S. Dominant Majorana bound energy and critical current enhancement in ferromagnetic-superconducting topological insulator. Eur. Phys. J. B 90, 44 (2017). https://doi.org/10.1140/epjb/e2017-70596-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70596-7

Keywords

Navigation