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Abstract. In the last decade much research effort has been devoted to the investigation of the interplay
between properties (i.e. synchronization, clustering, resilience to node fault) and topology of complex
networks. Many algorithms have been proposed to construct a network topology with a given properties
or to optimize them. These algorithms are static, off-line implemented and may require global network
knowledge. In this paper we propose a simple decentralized topology control algorithm that by local actions
carried out at the node allows to regulate network global properties. Additionally the algorithm is dynamic
coping with both node and link faults and can be on-line implemented.

1 Introduction

During recent years a really active research on complex
networks and their topological properties has been carried
out [1,2]. A network topology is represented by a graph
composed of nodes (e.g. a person, an agent, a router) and
links connecting them (e.g. a friendship relation, com-
munication channel, roadway). Many indexes have been
introduced in the literature to define and capture the es-
sential features and properties of the topology of a com-
plex network, such as diameter [3,4], the clustering coef-
ficient [5], the path sum [6,7] (just to cite a few). One of
the main topological index is the network connectivity de-
fined as the second smallest Laplacian eigenvalue λ2. It is
well known that its value characterizes how much quickly:
(i) the information spread through the network [8,9], and
(ii) the dynamical systems at nodes synchronize [10,11].
Also the largest Laplacian eigenvalue λN is of interest as
it gives a measure of network robustness to uncertain-
ties, time delays or fault propagation [8,12]. Many artifi-
cial and natural complex networks, the topological indexes
strongly affect the performance. For instance in computer
networks, a specific value of path sum affects how fast the
spreading of the information is, while in finance networks
to set a sufficiently high cluster coefficient may confine
the fault propagation to a small area closed to the faulty
bank [8]. Therefore it is of interest to formulate algorithms
to assess a topology with a desired index value. In the lit-
erature static and dynamic algorithms have been proposed
to both mime real networks (i.e. neural brains, social net-
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work, Internet network) [9,13,14] and construct networks
with assigned features [15]. Herein with the term static
algorithm refers to a method that is applied one-shot to
construct a topology with a given metric (degree distribu-
tion, connectivity). Differently, a dynamic algorithm may
act during time on the network to assess a given aim (i.e.
guarantee network connectivity). For example, the well
known Barabasi-Albert (BA) [16] model may be seen as
an algorithm for generating random scale-free networks
by the preferential attachment mechanism to build a net-
work exhibiting certain degree distribution, average path
length and clustering coefficient. Other algorithms may be
used to statically build networks according to the small
world [5] or pseudo random [17] model. In [15] a static
algorithm has been proposed to build an efficient network
topology with some connectivity properties with uniform
degree, small clustering and network connectivity as large
as possible. All the above algorithms are static and off-line
implemented. Therefore they are inefficient if the topology
changes during time (i.e. due to the fault of a link or node).

Dynamic topology control algorithms have been pro-
posed in the literature to maximize network connectivity
but they have the drawback to be centralized in the sense
that they need of a global network knowledge to make
a decision (i.e. add or remove a link). Moreover they try
to maximize the value of the index (i.e. λ2) without the
possibility to regulate it to a predefined desired value.

In order to dynamic regulate the network topology in-
dex in the presence of random link/node fault, herein we
propose on-line and decentralizable topology control algo-
rithm. Although the proposed algorithm is locally imple-
mented at each node, it is effective in controlling the global
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network indexes to a desired value. The main differences
of the algorithm with respect to existing ones in the liter-
ature are summarised in the following:

1. differently from the algorithms for the static network
topology construction, the proposed algorithm is dy-
namic by adding and removing links during time to
regulate a network index or feature to a desired set
point (or target) value [11,18];

2. differently than the dynamic algorithms that try to
optimize network connectivity, herein we regulate λ2

value to a desired setpoint value. This is an interest-
ing feature because in the case of network connectivity
maximization, a trivial choice is to add as many links
as possible assessing a full connected network [19]: this
could be expensive in terms of number of links to add;

3. the proposed algorithm is based on a random local
action, resulting robust to link and node failure [18];

4. the proposed algorithm may be easily implemented by
a decentralised way by using the well known consen-
sus algorithm, differently most of existing centralised
algorithms proposed in the literature (i.e. [20]).

2 Topology control algorithm

We consider a network modelled as a graph G(V, E, A)
with the set of node index V = {1, . . . , n}, set of edges
E ⊆ V × V , and a n× n adjacency matrix A = [aij ] with
elements aij :

aij =

{
1 if j ∈ Ni

0 otherwise
(1)

where Ni = {j : aij > 0} is the set of neighbours of node
ith. di =

∑n
i=1 aij is the node degree while the Laplacian

L is the matrix of elements lij such that lii =
∑N

j=1,j �=i aij

and lij = −aij for i �= j.
The proposed algorithm defines the probability pij of

existence of a link between nodes i and j according to the
following topology control law:

pij(k + 1) = pij(k) + (1 − pij(k))ξI(di, dj)δ(S(k) > S)

− pij(k)ξD(di, dj)δ(S(k) < S) (2)

where ξI and ξD are two tunable functions depending on
the network degree, S is the network index to regulate and
S its desired set-point value. In (2) the notation δ(·) de-
notes a function that is one (resp. zero) if its argument is
positive (resp. negative). Therefore δ(S(k) > S) = 1 (resp.
δ(S(k) > S) = 0) if S(k) > S (resp. S(k) < S). Simi-
larly meaning for the term δ(S(k) < S). The algorithm
defines the probability of existence pij for all (i, j) ∈ E
and generate a n× n probability matrix P . The new net-
work adjacency matrix AP is then generated according to
a Bernoulli distribution function as AP = Bern(P ) and
has elements:

aP
ij =

{
1 with probability pij

0 with probability 1 − pij .
(3)

Let the index S be controlled to a desired value S̄, the idea
of the algorithm is to increase (or decrease) the probability
of existence of a link if the value of the index S > S̄ (or
viceversa). This allows to regulate S close to S̄. In order to
implement the control law (3), each node needs to evaluate
a measure (or its estimation) of the index value S(k), that
can be carried out in a decentralized way. In the following
we will detail examples of topology indexes or properties
S controllable by the proposed algorithm.

1. Diameter (later shortly DI) defined as S = maxij lij
where lij is the distance between nodes i and j. We
may evaluate the value of S(k) in a centralized way by
knowing the adjacency matrix A or in a decentralized
way by using Dijikstra’s algorithm (commonly used in
the routing algorithm).

2. Path sum (later shortly PS) defined as S =
1

N(N−1)

∑
i�=j lij . It can be evaluated in a decentral-

ized way by using a consensus algorithm on the local
variable lij [21,22].

3. Global efficiency (later shortly GE) defined as S =
1

N(N−1)

∑
i�=j

1
lij

. It may be evaluated in a distributed
way by the average consensus algorithm on the variable
1

lij
[23,24].

4. Network connectivity (λ2). The evaluation of λ2 is cen-
tralized but there are several algorithms to estimate it
in a decentralized way [25–28].

5. Clustering coefficient (later shortly CC) defined as S =
1
N

∑
i Ci [5] with Ci = |ejh :vj ,vh∈Ni,ejh∈E|

ki(ki−1) , ejh is the
edge between nodes j and h with vertex vj and vh

respectively, ki is the number of neighbours of i. Also
in this case an average consensus algorithm can be used
to estimate the value of S(k) in a decentralised way at
node i.

The probability of existence of a link also depends on the
functions ξI and ξD that can be opportunely tuned accord-
ing to different desired algorithm behaviour and specifica-
tions. It is well known that more efficient networks are
characterized by a graph with uniform node degrees with
few hubs or bottleneck nodes [20,29]. This means that an
efficient rewriting rule has to remove links on the nodes
with high degree and add links to the ones with low de-
gree. In this respect we specifically consider the following
functions:

ξI =
kI

di + dj
(4a)

ξD = kD(di + dj) (4b)

where kI and kD are tunable gains. In this way if S(k) > S
the algorithm increases the number of connections be-
tween nodes in order to decrease S(k). This is assessed by
the function ξI(di, dj) = ki

di+dj
in (2) that increases the

probability of existence of a link between nodes with low
degree. Conversely if S(k) < S, the algorithm decreases
the number of connections between nodes with higher de-
gree by mean of the function ξD(di, dj) = kD(di + dj). In
this way the index S is regulated close to the set point
value S and, as side effect, the network topology presents
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uniform distribution of nodes degree. In other words, the
idea of the algorithm is to mime the Robin Hood behaviour
by “robbing from the rich node with high degree and giv-
ing to the poor node with low degree”. If an opposite-type
control behaviour is required (e.g. “rich get richer”), we
just need to invert the sign of the addends in (2): this is
the case when GE or CC are the indexes to control. No-
tice that the algorithm (2) allows by local actions at each
node ith to control the global network index S to a desired
value S̄. This will be validate by representative simulation
scenarios, and it will be subject of the next section.

3 Algorithm validation and tuning

In what follows we will show a variety of simulations vali-
dating the effectiveness of the proposed algorithm in sev-
eral scenarios. Firstly we compare the proposed dynamic
algorithm with respect to a static network topology con-
struction proposed in [15]. Then we will validate the algo-
rithm for larger network and in the presence of node/link
fault. In this scenario we make a performance comparison
than a random centralised algorithm. Finally we evaluate
the algorithm responsiveness (later define as convergence
time) under variations of algorithm parameters. The re-
sults may be used to tune the algorithm to cope with
several scenarios. Interestingly, the final network configu-
ration presents the same performance in terms of Entropy
value independently on the controlled index. This means
that the algorithm is able to guarantee the same “network
navigability” property despite the controlled index.

In the performance evaluation we will consider the
metrics introduced in the previous section and, in addi-
tion, the following:

– Degree (later shortly DE): the average number of links
at network nodes.

– λ2/λN : the eigenratio of the Laplacian matrix.
– Number of links (later shortly NL): the total number

of links in the network.
– Entropy (later shortly h): the entropy of the network

as defined in [30].

For performance comparison purpose, we define the rela-
tive variation of an index Ipro obtained under the proposed
topology control than the value Iref obtained under a ref-
erence algorithm (i.e. static construction or random algo-
rithm), namely: ΔI = 100 · Ipro−Iref

Iref
in %. In the following

we will refer to the index ΔI as a comparison metric while
the proposed algorithm will be denoted in tables by the
label pro.

3.1 Building networks with desired properties

First of all we compare the proposed dynamic control than
a static off-line algorithm construction proposed in [15].
Specifically, therein it has been considered ad-hoc opti-
mal construction of small network of 30 nodes character-
ized by high value of different indexes introduced above

Table 1. Control and construction of a network of 30 nodes
with a setpoint index PS = 3. First column in table presents
the indexes at time t = 0; second column in table shows the in-
dexes values obtained under the proposed algorithm pro; third
column in table shows the metrics obtained under the static
construction procedure proposed in [15]. Last column in table
presents the comparison metric ΔI of the proposed topology
control than the static network construction algorithm.

t = 0 pro Reference [15] ΔI(%)
PS 3.2690 2.9788 3 –0.71
DE 3.1333 5.2483 2.766 89.74
λ2 0.0990 1.0837 1 8.37

λ2/λN 0.0106 0.1184 0.167 –29.10
DI 8 4.5425 4 13.56
NL 46.999 78.724 45 74.94

h (α = 1) 2.717 1.878 1.099 70.88

Table 2. Control and construction of a network of 30 nodes
with a setpoint index DI = 4. First column in table presents
the indexes at time t = 0; second column in table shows the in-
dexes values obtained under the proposed algorithm pro; third
column in table shows the metrics obtained under the static
construction procedure proposed in [15]. Last column in ta-
ble shows the comparison metric ΔI of the proposed topology
control than the static network construction algorithm.

t = 0 pro Reference [15] ΔI(%)
PS 3.2690 2.0457 3 –31.81
DE 3.1333 5.9269 2.766 114.27
λ2 0.0990 1.3239 1 32.39

λ2/λN 0.0106 0.1065 0.167 –36.23
DI 8 3.6419 4 –8.95
NL 46.999 88.903 45 97.56

h (α = 1) 2.717 1.891 1.099 72.07

and reported for comparison in Tables 1–3. We apply the
proposed algorithm to control several indexes (i.e. path
sum PS, diameter DI, λ2) with a setpoint value S as in-
dicated in the original reference [15]. In Tables 1–3 are
reported the metrics of the topology obtained under both
the proposed and static construction algorithm when the
the setpoint value is: S = PS = 3 (Tab. 1), S = DI = 4
(Tab. 2) and S = λ2 = 1 (Tab. 3). The metrics are eval-
uated at steady state (i.e. the dynamic network control
process has reached the steady state condition) by carry-
ing out an average value over 30 realizations.

It appears from Table 1 that the proposed algorithm is
able to dynamically control the PS index close to the de-
sired value. The other (uncontrolled) indexes (i.e. degree,
network connectivity) present an improved value than the
initial value at t = 0. Moreover, the values of λ2 and
λ2/λN outperform those obtained with the static algo-
rithm [15]. This is due to the intrinsic ability of the algo-
rithm to balance and uniform the network nodes degree
by the control functions (4) with beneficial effect on most
of uncontrolled network metrics. Indeed, the variance of
nodes degree obtained under the proposed algorithm is
low, being σ(DE) = 0.1766. This is made at the cost of
using a larger number of links (NL in Tabs. 1–3).
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Table 3. Control and construction of a network of 30 nodes
with a setpoint index λ2 = 1. First column in table presents
the indexes at time t = 0; second column in table shows the in-
dexes values obtained under the proposed algorithm pro; third
column in table shows the metrics obtained under the static
construction procedure proposed in [15]. Last column in table
shows the comparison metric ΔI of the proposed control than
the static network construction algorithm.

t = 0 pro Reference [15] ΔI(%)
PS 3.2690 2.6582 3 –11.39
DE 3.1333 4.8219 2.766 74.33
λ2 0.0990 0.9813 1 –1.87

λ2/λN 0.0106 0.1149 0.167 –31.20
DI 8 3.9065 4 –2.34
NL 46.999 72.329 45 60.73

h (α = 1) 2.717 1.864 1.099 69.61

Similar considerations may be stated when the con-
trolled index is the diameter DI and network connectivity
λ2 as shown by the results in Tables 2 and 3, respectively.

Additionally it has been evaluated the comparison
metric ΔI to compare the metrics obtained under the
proposed algorithm with respect to the static algorithm
in [15]. The results in Tables 1–3 highlight the good
set point regulation of the controlled indexes (i.e. PS,
DI, λ2). For the uncontrolled indexes we may observe
several trends. Specifically, the indexes strictly related to
the connectivity (i.e. λ2, λ2/λN , DE) and entropy (i.e. h)
are substantial better under the proposed algorithm; the
number of links NL is higher for the proposed topology
control, but this effect is mitigated on larger network as
it will pointed out in the next simulations; the rest of
indexes present a slightly difference and behaviour (i.e.
|ΔI| ≤ 10%).

Finally we evaluate the navigability of the topology
obtained by the proposed decentralized algorithm. We re-
fer to the general formulation of the entropy for a network
with random walks [30] defined as:

πij =
aijd

α
j∑

j aijdα
j

(5a)

h = −
∑
i,j

πijw
∗
i ln(πij) (5b)

where w∗
i is the stationary distribution of the Markov

chain described by (5a) (see [30] for further details).
Entropy is a measure of a diffusion process on a net-

work. High entropy rate indicates a large randomness, or
easiness of propagating from one node to another, and can
be related to an efficient spreading of the information over
the network. By changing the value of the exponent α we
can tune the dependence of the diffusion process on the
node property degree di. When α �= 0 we are introducing
in the random walk of the particle a bias towards neigh-
bour nodes with high di (α > 0) or low di (α < 0). For
α = 0, the standard unbiased random walk is obtained.

In Figure 1 the entropy of the topology obtained con-
trolling different indexes (i.e. PS, DI, λ2) is shown under

-0.5 0 0.5 1 1.5 2 2.5 3
α

1.5

1.6

1.7

1.8

1.9

2

2.1

h

PS
DI
λ2

Fig. 1. Entropy for different values of α when PS, DI and
λ2 are the controlled indexes. The entropy is independent from
the particular controlled index for each value of α.

Table 4. Control and construction of a network of 50 and
100 nodes respectively with a setpoint index PS = 2.8. First
and third columns in table presents the indexes values obtained
under the proposed algorithm pro; second and fourth columns
in table shows the comparison metric ΔI of the proposed con-
trol than the random algorithm.

50 nodes 100 nodes
pro ΔI(%) pro ΔI(%)

PS 2.7368 –2.93 2.7803 –0.81
DE 4.2619 –6.31 5.8934 –1.65
λ2 0.9652 29.13 1.2540 26.32

λ2/λN 0.0963 23.74 0.1382 47.09
DI 4.9677 –33.22 4.5484 –52.58
NL 106.55 –6.31 294.67 –1.65

different values of α. Interestingly, the entropy value is al-
most independent from the particular controlled index. In
this way, the topology has the same navigability property
independently from the controlled index and the strategy
used to visit the network nodes.

3.2 Performance over large networks

We consider a more realistic scenario when the network
is composed of 50 and 100 nodes. The results are shown
in Table 4 and confirm the effectiveness of the algorithm
to control the index to the desired setpoint value. Notice
that due to the intrinsic stochastic nature of the proposed
algorithm, better performance are obtained for larger net-
works. For instance the controlled index PS is closer to
the set point PS for a network of 100 nodes than one
of 50. Therefore the proposed algorithm may be suitable
for network of practical interest (e.g. engineering network,
social network) for which the size is large or may increase
during time.
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Fig. 2. Dynamic evolution of the path sum PS controlled to
a setpoint value of 2.8 for a network of 100 nodes.

Table 5. Control and construction of a network of 50 with a
setpoint index GE = 0.52 and 100 nodes with a setpoint in-
dex GE = 0.40. First and third columns in table presents the
indexes values obtained under the proposed algorithm pro; sec-
ond and fourth columns in table shows the comparison metric
ΔI of the proposed control than the random algorithm.

50 nodes GE = 0.52 100 nodes GE = 0.40
pro ΔI(%) pro ΔI(%)

GE 0.5125 –0.019 0.4151 –0.93
PS 2.2119 –0.14 2.7020 0.25
DE 6.8387 –2.15 6.2458 3.03
λ2 1.5057 5.81 0.9033 2.42

λ2/λN 0.1012 –5.73 0.0591 –4.86
DI 4.1613 –3.88 5.1613 –32.91
NL 170.97 –2.15 312.29 3.03

In Figure 2 it is reported the dynamic evolution of
the path sum PS when the setpoint S = PS = 2.8. The
algorithm adds links till the index value is decreased to
the desired setpoint value (in about 500 time steps). At
steady state, the algorithm is able to guarantee the set-
point tracking.

Now we will validate the proposed topology control
algorithm when a different kind of index is controlled.
Specifically we control the global efficiency GE and clus-
tering coefficient CC index. To this aim we need to have
a “rich get richer” behaviour of the controlled network by
inverting the sign of the addends in (2).

The results in Table 5 show the effectiveness of the
algorithm to track the desired value of GE.

Similarly, the clustering coefficient index is efficiently
controlled to the desired value as shown by the results in
Table 6.

Table 7 shows the simulation results when the network
connectivity λ2 is the controlled index.

For sake of comparison, we implement a simple cen-
tralised algorithm (later random algorithm) that ran-
domly adds links in order to get the desired index value.

Table 6. Control and construction of a network of 50 and
100 nodes respectively with a setpoint index CC = 0.1. First
and third columns in table presents the indexes values obtained
under the proposed algorithm pro; second and fourth columns
in table shows the comparison metric ΔI of the proposed con-
trol than the random algorithm.

50 nodes 100 nodes
pro ΔI(%) pro ΔI(%)

CC 0.1254 –0.012 0.1034 1.32
PS 2.2765 –13.81 2.1984 –1.89
DE 6.3884 19.00 10.364 3.31
λ2 1.3185 22.94 2.7656 6.28

λ2/λN 0.0932 –3.9807 0.1341 –2.82
DI 4.1623 –44.34 3.8065 –8.76
NL 159.70 19.00 518.19 3.31

Table 7. Control and construction of a network of 50 and
100 nodes respectively with a setpoint index λ2 = 1.5. First
and third columns in table presents the indexes values obtained
under the proposed algorithm pro; second and fourth columns
in table shows the comparison metric ΔI of the proposed con-
trol than the random algorithm.

50 nodes 100 nodes
pro ΔI(%) pro ΔI(%)

PS 2.1992 –8.35 2.4124 7.32
DE 6.7742 11.65 8.1465 –1.80
λ2 1.4711 0.08 1.5176 –1.22

λ2/λN 0.1311 4.57 0.0863 4.56
DI 4.0323 –24.32 4.1935 –7.20
NL 169.35 11.65 407.32 –1.80

We compare the metrics of the topology obtained under
the proposed algorithm than ones of the random algo-
rithm by evaluating the comparison metric ΔI. From the
results in Tables 4–7 it appears that for most of indexes
the performance are comparable (|ΔI| ≤ 10%). Moreover,
the topology obtained by the proposed algorithm presents
better network connectivity λ2, eigenratio λ2

λN
, and lower

diameter. Notice that in this case of larger network, the
number of links used by both algorithms is almost the
same.

3.3 Properties preservation under node/link fault

Herein we point out how the proposed algorithm is dy-
namic and allows to regulate the index to a desired value
despite the presence of link and node faults, differently
than the random algorithm.

In other terms, the proposed algorithm is robust with
respect to failure of links or nodes. In Figure 3 is depicted
the dynamic evaluation of the path sum with a setpoint
value of 2.8 when the fault of the 10% of the links occurs
at 1000 time steps. The effect of the fault is to increase
the path sum due to the increase of the length of shortest
paths. The proposed algorithm copes with the fault and
guarantees the index regulation to the setpoint. Differently
the random algorithm is unable to guarantee the setpoint
regulation as the path sum definitely increases (yellow line

http://www.epj.org
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Fig. 3. Dynamic evolution of the path sum for a network of
100 nodes and P̄ S = 2.8 when at time 1000 the 10% of links
fault occurs.
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Fig. 4. Dynamic evolution of the path sum for a network
of 100 nodes and P̄ S = 2.8 (red dashed line) in two faulty
scenarios: (1) fault of 30% of the nodes at time 1000 (yellow
continuous line); (2) addition of 30% of nodes at time 1000
(blue continuous line).

in Fig. 3) after the fault, with a final value different from
the setpoint (red dashed line in Fig. 3).

Finally we have validated the proposed algorithm un-
der nodes fault. We firstly consider the previous network
scenario and remove up to 30% of nodes at 1000 unit steps.
The path sum (yellow continuous line in Fig. 4) increases
and then is controlled by the proposed algorithm to the
setpoint value (red dashed line in Fig. 4). Similar perfor-
mance are obtained when a 30% of nodes has been added
as shown in Figure 4 (blue continuous line). The path sum
value firstly decreases due to the addition of new nodes
and related links, and finally is controlled to the setpoint
value.

3.4 Performance under limited range of action

The proposed algorithm is implemented assuming that
each node may add a link to any other node. This as-
sumption is realistic for small networks or for infrastruc-
ture (i.e. computer networks) for which is possible to have
a link between any nodes at relatively low cost. In spacial-
distributed complex networks, nodes have a specific loca-
tion and links between them have a cost proportional to
the distances between them. In other scenarios a node may
be constrained to connect with neighbours within a spe-
cific range of action (i.e. wireless communications) [31–33].
In the latter cases, the applicability of the proposed algo-
rithm is constrained to a limited range of action. In order
to model this behaviour, let pi = [pix , piy ] the coordinates
of node ith in a square lattice of length L, rij the euclidean
distance between nodes i and j, and R the nodes trans-
mission or connection radius, the elements of adjacency
matrix are recast as:

aij =

{
1 if j ∈ Ni and rij ≤ R

0 otherwise.
(6)

Obviously when R is set as the maximum network dis-
tance, we have the scenarios previously analysed. Inter-
estingly there is a trade off between the value of R (i.e.
node visibility or cost to build link of maximum range R)
and time to control the index to its setpoint value. The lat-
ter time is referred as convergence time tc and it is defined
as the time at which the relative error of the controlled
index than the setpoint value is below the 5%. We may
tune the algorithm parameters kI and kD in equations (4)
in order to affect the convergence time for a given value
of R. Higher values of kI and kD improve algorithm re-
sponsiveness and so the convergence time is reduced.

In order to evaluate the trade-off between the conver-
gence time tc and the transmission radius R, we compute
tc for a network of 100 nodes on a square lattice with
area L2, L = 30 under variation of R ∈ [0.2 ,

√
2]L. In

this way the network topology ranges from being discon-
nected to be full connected. In Figure 5 the convergence
time tc versus the relative radius (i.e. R/L) is depicted
when the controlled index is the path sum and k̄I = 10−2

and k̄D = 10−4 (red line). Notice that for R/L < 0.38,
the network is disconnected and tc is not valuable. For
R/L ∈ [0.38 , 0.6], tc rapidly decreases at a lower rate for
R/L > 0.6 (a saturation effect from below occurs). There-
fore for gains k̄I = 10−2 and k̄D = 10−4, a good value to
trade off the convergence time tc and the cost due to the
link length is R/L = 0.6.

In Figure 5 are also shown the results of convergence
time for different values of kI and kD. As expected, higher
(resp. lower) values of kI and kD improves (resp. deteri-
orate) the convergence time for a given R. The results in
Figure 5 allow to tune R, kI and kD to have a desired con-
vergence time under cost constraints (i.e. length of links).

http://www.epj.org
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Fig. 5. Convergence time tc of the controlled index path sum
to the setpoint value P̄ S as function of the relative transmission
radius R/L and algorithm parameters kI and kD. The network
is composed of 100 nodes randomly distributed on a square
area with edge length L = 30. k̄I = 10−2, k̄D = 10−4, while
the vertical dashed line is the radius R below which the network
is disconnected.

4 Conclusions

In this paper we proposed a simple decentralized topol-
ogy control algorithm that by local actions carried out at
nodes allow to regulate complex network global properties.
The main features of the proposed algorithm are to be dy-
namic and decentralized. Additionally it copes with both
nodes and links fault. A performance comparison of the
proposed topology control algorithm than a static network
construction and random algorithms has been carried out.
The simulation results show the effectiveness of the pro-
posed algorithm to regulate the complex network indexes
to given setpoint values.
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17. P. Erdős, A. Rényi, Publ. Math. Instrum. Hungar. Acad.

Sci. 5, 17 (1960)
18. M. Dadashi, I. Barjasteh, M. Jalili, Chaos 20, 043119

(2010)
19. D. Xu, Y. Li, T.J. Wu, Physica A 382, 722 (2007)
20. M. Jalili, Neural Networks and Learning Systems IEEE

Trans. 24, 1009 (2013)
21. S. Manfredi, Control Engineering Practice 21, 381 (2013)
22. R. Olfati-Saber, R.M. Murray, IEEE Trans. Automatic

Control 49, 1520 (2004)
23. S. Manfredi, D. Angeli, Automatica 77, 51 (2017)
24. S. Manfredi, D. Angeli, Automatica 64, 182 (2016)
25. F. Knorn, R. Stanojevic, M. Corless, R. Shorten, Int. J.

Control 82, 2095 (2009)
26. P. Yang, R. Freeman, G. Gordon, K. Lynch, S. Srinivasa,

R. Sukthankar, Automatica 46, 390 (2010)
27. L. Sabattini, C. Secchi, N. Chopra, Decentralized control

for maintenance of strong connectivity for directed graphs,
in Control Automation (MED), 2013 21st Mediterranean
Conference on (2013), pp. 978–986

28. S. Manfredi, E.D. Tucci, Int. J. Control, DOI: 10.1080/

00207179.2016.1201218

29. T. Nishikawa, A.E. Motter, Y. Lai, F.C. Hoppensteadt,
Phys. Rev. Lett. 91, 014101 (2003)
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