Skip to main content
Log in

Microcanonical Monte Carlo study of one dimensional self-gravitating lattice gas models

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this study we present a microcanonical Monte Carlo investigation of one dimensional (1 − d) self-gravitating toy models. We study the effect of hard-core potentials and compare to the results obtained with softening parameters and also the effect of the topology on these systems. In order to study the effect of the topology in the system we introduce a model with the symmetry of motion in a line instead of a circle, which we denominate as 1 /r model. The hard-core particle potential introduces the effect of the size of particles and, consequently, the effect of the density of the system that is redefined in terms of the packing fraction of the system. The latter plays a role similar to the softening parameter ϵ in the softened particles’ case. In the case of low packing fractions both models with hard-core particles show a behavior that keeps the intrinsic properties of the three dimensional gravitational systems such as negative heat capacity. For higher values of the packing fraction the ring model behaves as the potential for the standard cosine Hamiltonian Mean Field model while for the 1 /r model it is similar to the one-dimensional systems. In the present paper we intend to show that a further simplification level is possible by introducing the lattice-gas counterpart of such models, where a drastic simplification of the microscopic state is obtained by considering a local average of the exact N-body dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Campa, T. Dauxois, D. Fanelli, S. Ruffo, Physics of Long-Range Interacting Systems (Oxford University Press, Oxford, 2014)

  3. F.B. Rizzato, R. Pakter, Y. Levin, Phys. Rev. E 80, 021109 (2009)

    Article  ADS  Google Scholar 

  4. T. Padmanabhan, Phys. Rep. 188, 285 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Venaille, T. Dauxois, S. Ruffo, arXiv:1503.07904 (2015)

  6. A. Antoniazzi, Y. Elskens, D. Fanelli, S. Ruffo, Eur. Phys. J. B 50, 603 (2006)

    Article  ADS  Google Scholar 

  7. Lj. Milanović, H.A. Posch, W. Thirring, J. Stat. Phys. 124, 843 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. T.N. Teles, Y. Levin, R. Pakter, F.B. Rizzato, J. Stat. Mech. 2010, P05007 (2010)

    Article  Google Scholar 

  9. M. Antoni, S. Ruffo, Phys. Rev. E 85, 2361 (1995)

    Article  ADS  Google Scholar 

  10. Y. Sota, O. Igushi, M. Morikawa, T. Tatekawa, K. Maeda, Phys. Rev. E 64, 056133 (2001)

    Article  ADS  Google Scholar 

  11. T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Dynamics and Thermodynamics of Systems with Long-Range Interactions (Springer, Berlin, 2002)

  12. T. Tatekawa, F. Bouchet, T. Dauxois, S. Ruffo, Phys. Rev. E. 71, 056111 (2005)

    Article  ADS  Google Scholar 

  13. D. Lyndem-Bell, Mon. Not. Roy. Astron. Soc. 138, 495 (1968)

    Article  ADS  Google Scholar 

  14. V.A. Antonov, Vest. Leningrad Gros. Univ. 7, 135 (1962) [English transl. in IAU Symposium 113, Dynamics of Globular Clusters, edited by J. Goodman, P. Hut (Dordrecht: Reidel, 1985), pp. 525-540]

    Google Scholar 

  15. D. Heggie, P. Hut, The Gravitational Million-Body Problem (Cambridge University Press, Cambridge, 2003)

  16. F. Hohl, M.R. Feix, Astrophys. J. 147, 1164 (1967)

    Article  ADS  Google Scholar 

  17. T. Tatekawa, F. Bouchet, T. Dauxois, S. Ruffo, Phys. Rev. E 52, 2361 (1995)

    Google Scholar 

  18. T.M. Rocha Filho, M.A. Amato, A. Figueiredo, Phys. Rev. E 71, 062103 (2012)

    Article  ADS  Google Scholar 

  19. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1997)

  20. M.H. Kalos, P. Whitlock, in Monte Carlo Methods (Willey, New York, 1986), Vol. 1

  21. D. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2009)

  22. K. Binder, Rep. Prog. Phys. 60, 487 (1997)

    Article  ADS  Google Scholar 

  23. J.M. Maciel, M.-C. Firpo, M.A. Amato, Physica A 424, 34 (2015)

    Article  Google Scholar 

  24. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  25. M. Creutz, Phys. Rev. Lett. 50, 1411 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Ray, Phys. Rev. A 44, 4061, (1991)

    Article  ADS  Google Scholar 

  27. M. Kac, G. Uhlenbeck, P. Hemmer, J. Math. Phys. 4, 216 (1963)

    Article  ADS  Google Scholar 

  28. W. Braun, K. Hepp, Commun. Math. Phys. 56, 125 (1977)

    Article  Google Scholar 

  29. P.-H. Chavanis, Physica A 361, 55 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. T.M. Rocha Filho, M.A. Amato, A.E. Santana, A. Figueiredo, J.R. Steiner, Phys. Rev. E 89, 032116 (2014)

    Article  ADS  Google Scholar 

  31. M.K.-H. Kieslling, J. Stat. Phys. 155, 1299 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Champion, A. Alastuey, T. Dauxois, S. Ruffo, J. Phys. A 47, 225001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. C. Nardini, L. Casetti, Phys. Rev. E 80, 060109 (2009)

    Article  Google Scholar 

  34. T.M. Rocha Filho, M.A. Amato, B.A. Mello, A. Figueiredo, Phys. Rev. E 84, 041121 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antônio Amato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciel, J.M., Amato, M.A., da Rocha Filho, T.M. et al. Microcanonical Monte Carlo study of one dimensional self-gravitating lattice gas models. Eur. Phys. J. B 90, 43 (2017). https://doi.org/10.1140/epjb/e2017-70550-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70550-9

Keywords

Navigation