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Abstract. The problem of finite-time synchronization of fractional-order simplest two-component chaotic
oscillators operating at high frequency and application to digital cryptography is addressed. After the
investigation of numerical chaotic behavior in the system, an adaptive feedback controller is designed to
achieve the finite-time synchronization of two oscillators, based on the Lyapunov function. This controller
could find application in many other fractional-order chaotic circuits. Applying synchronized fractional-
order systems in digital cryptography, a well secured key system is obtained. Numerical simulations are
given to illustrate and verify the analytic results.

1 Introduction

Over decades, the study of fractional-order systems is
gaining ground both in theory and practice. It has been
found that in many practical cases, systems can be more
adequately described using fractional-order differential
equations [1–11]. Furthermore, fractional-order derivatives
are excellent instruments for the description of memory
and hereditary properties of various materials and pro-
cesses [12]. Fractional-order systems have also the advan-
tage of possessing higher degrees of freedom compared to
their integer-order counterparts [13].

Recently, increasing interest has been devoted to the
study of chaotic phenomena in fractional-order counter-
parts of integer-order dynamical systems [14–23]. Surpris-
ingly almost all of the existing fractional-order chaotic
systems found so far in the literature shared a common
characteristic: there are operating in low frequency range
which is somehow a drawback for their potential applica-
tions in secure communication and control processing.

Among various possible applications of chaos, synchro-
nization of chaotic systems in secure communication be-
comes inescapable [24,25]. Yet, several authors are also
interested in the synchronization of the fractional-order

a e-mail: g.litak@pollub.pl

chaotic systems [22,23,26–35]. The transient time preced-
ing the synchronization state of chaotic oscillators is cru-
cial as it unfortunately corresponds to the laps of time
during which the encoded message cannot be recovered or
sent. More than a difficulty, this is a catastrophe in digital
telecommunications since the first bits of standardized bit
strings always contain signalization data, i.e, the identity
card of the message. Hence, it clearly appears that the syn-
chronization time has to be known and minimized, so to
make the synchronization be achieved as fast as possible.
In this context, there is a relentless activity in the study of
finite-time chaos synchronization [36,37] and gradually of
fractional-order systems [38–40]. Unfortunately, in many
of these references dealing with synchronization, for exam-
ple in the previous three, applications in secure communi-
cation are missing. The authors of reference [22], although
working on secure communication, use rather an infinite-
time synchronization technique applied on a low frequency
operating circuit.

Recent examples of two-component electronic cir-
cuits [41] operating at high frequency [42,43] have been
reported. In spite of the simplicity of [43] made solely of a
transistor and a tapped coil, Joana et al. [44] have revealed
the presence of infinite families of spiral phases of stabil-
ity in its phase diagrams. Meanwhile Nguimdo et al. [45]
coupling three such circuits in a unidirectional ring
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studied with success their potential applications to ran-
dom bit generator. That circuit appears to be a good can-
didate to tackle some of the problems noted in some of the
above references as drawbacks. The idea of finite-time syn-
chronization of fractional-order has recently been tackled
in reference [46]. Based on a linear feedback controller the
authors presented for the first time the finite-time input-
to-state stable theory of fractional-order dynamical sys-
tems in the goal to achieve complete synchronization in
the presence of uncertainties and disturbance. Numerical
simulations were given to support the feasibility of the
presented synchronization scheme. Our approach can be
considered as another aspect of similar development.

In the present paper, based on the Lyapunov function
a fractional adaptive finite-time synchronization reflecting
the method in [47] is proposed for fractional-order versions
of the circuit in [43]. Then, a new key system for encryp-
tion on digital cryptography is found, using the proposed
finite-time synchronization scheme which is more secure
and more powerful than an existing key system of integer-
order synchronization [22].

High frequency signals are characterized among others
by a brighter bandwidth, compared to low frequency ones.
In chaos-based communications, the speed of the message
which can be well concealed within a chaotic jamming
depends on the bandwidth of the chaotic signal. If the
bandwidth is large, then the speed of the message will
be significant, leading to high processing speeds [45]. For
this purpose, a great interest is placed on chaotic circuits
operating at high frequency. Hence the importance of the
synchronization of chaotic systems operating at such fre-
quencies with respect to the synchronization of their coun-
terparts operating at low frequencies.

The outline of this paper foresees in Section 2 the pre-
sentation of the fractional-order mathematical model de-
rived from the corresponding electronic device as well as a
brief investigation of its chaotic dynamics. Section 3 deals
with the adaptive finite-time synchronization of two iden-
tical fractional-order two-component oscillators. Here, the
active controller is designed and the theoretical settling
time is developed. Numerical simulations are performed
to show the effectiveness of the synchronization scheme.
In Section 4, using the results of the finite-time fractional-
order synchronization, a digital cryptography is investi-
gated. In that same section, the Fibonacci Q matrix and
the new key using the frequency of the fractional-chaotic
circuit help to secure a digital message. Finally, in the last
section, conclusions are provided.

2 Dynamic of fractional-order simplest
two-component oscillator

2.1 Circuit model and mathematical modeling

A fractional order dynamical system is an nontrivial ex-
tension with respect to integer one. The main difference
would focus on in the memory of system. This memory
modifies effective dimensionality of the dynamical system.

 

Fig. 1. Equivalent circuit of the simplest two-component os-
cillator proposed in [43], using the simplified Giacoletto dy-
namic model of the JFET for small signals at high frequency
and governed by the fractional-order four-dimensional flow in
equation (1).

Figure 1 represents the high-frequency small-signal equiv-
alent model of the two-component oscillator modeled by
Tchitnga et al. in [43]. In that model the currents flowing
through the parasitic capacitors CGS and CGD depend
on the integer-order derivative of the voltage across the
same parasitics capacitors respectively; while the voltages
across the two parts L1 and L2 of the inductor depend on
the integer-order derivative of currents flowing through
those two inductor parts. The internal resistance of the
tapped coil is neglected.

In the present paper we consider that the currents flow-
ing through the parasitic capacitors CGS and CGD de-
pend rather on the fractional-order derivative of the cor-
responding voltages across these capacitors. Furthermore,
the voltages across the two parts L1 and L2 of the induc-
tor will now depend on the fractional-order derivative of
currents flowing them, while the internal resistance of the
tapped coil remains neglected. To remind, the fractional-
order, q (0 < q < 1), commensurate circuit is considered
and according to the Kirchhoff laws. For simplicity, we
assumed the same fractional order in the corresponding
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqVGS

dtq
= 1

CGS
(−i1 + i2 − iD − Id)

dqVGD

dtq
= 1

CGD
(−i2 + Id)

dqi1
dtq

= 1
L1

VGS

dqi2
dtq

= 1
L2

(−VGS + VGD + E) .

(1)

Here iD and Id represented below are nonlinear currents
flowing through the diode and from the drain to the source
of the transistor respectively:

iD = IS

[

exp
(

VGS

VT

)

− 1
]

, (2)
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Fig. 2. (a) Bifurcation diagram of the local extrema for the
variable VGS and (b) the corresponding Largest Lyapunov ex-
ponent for q = 0.96 while the bias voltage source E increases
from 0 to 10 V. The chaotic behavior is observed for the val-
ues of control parameters corresponding to the positive Largest
Lyapunov exponent.

and

Id =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if VGS ≤ VGSoff

gm0(VGS − VGSoff)2 if VGD ≤ VGSoff

gm0 (VGS − VGD) (VGS + VGD − 2VGSoff)

if VGD ≥ VGSoff.

(3)

The experimental values of parameters are given as fol-
lows: CGS = 3.736 pf, CGD = 3.35 pf, L1 = 24.5 μH,
L2 = 4 μH, IS = 33.57 fA, VGSoff = −1.409 V, gm0 =
1.754 mA V−2, and VT = 25 mV.

The voltage source E and the commensurate
fractional-order q are used as control parameters for the
numerical characterization of chaotic phenomena in the
circuit. The fractional-order system (1) is solved by means
of the improved version of Adam-Bashforth-Moulton nu-
merical algorithm while the Lyapunov exponents have
been obtained by means of the Wolf algorithm [48]. Note
that this algorithm is used as a rough approximation [49].
It could give wrong estimations of the maximal Lyapunov
exponnent account for a variable phase space dimension
occuring in systems with memory.

2.2 Bifurcations

Figure 2 depicts the bifurcation diagram (Fig. 2a) and the
corresponding Lyapunov exponent (Fig. 2b), respectively.
The commensurate fractional-order is fixed at q = 0.96
and the control parameter varies in the range (0 < E <
10) V. Period doubling route to chaos occurs in this
fractional-order model from E = 0.6 V to E = 3.18 V,
while chaotic behavior is recorded for (3.52 < E < 10) V,
confirmed by the largest Lyapunov exponent.
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Fig. 3. (a) Bifurcation diagram of the local extremal for the
variable VGS plotted when the control parameter q increases
from 0.91 to 1 and bias voltage source fixed at E = 3 V; (b) the
corresponding Largest Lyapunov exponent for the same range
of the control parameter q.

Repeating that calculations by keeping the bias voltage
source (previous control parameter) fixed at E = 3 V and
varying rather the commensurate fractional-order 0.9 <
q < 1, Figure 3 is obtained. The new bifurcation diagram
(Fig. 3a) and its corresponding largest Lyapunov exponent
(Fig. 3b) display other cases with rich dynamics, when
the control parameter q varies in the range 0.9 < q < 1.
Period doubling sequences in the circuit (P1 → P2 →
P4 → P8) can be noted in Figure 3a when q increases from
0.9 to 0.9674. Here, the Lyapunov exponent is negative
(see Fig. 3b).

A jump to period-six is observed for 0.9708 < q <
0.9724 before the dynamic behavior in the circuit falls into
chaos, materialized by the positive Lyapunov exponents
(Fig. 3b).

For the selected couple of parameters (E = 4 V, q =
0.96) in the chaotic domain, the power spectrum with its
peak at around F = 0.15 GHz (Fig. 4a) confirms that the
fractional-order two-component chaotic circuit oscillates
at high frequencies. The Poincaré map (Fig. 4b) plotted
in the plan VGD − i2 for VGS = 0.6 and the phase portrait
(Fig. 4c) are also given.

Remark 1: The larger range of variation of the bias
voltage source (Fig. 3) for chaos in the fractional-order
two-component oscillator compared to the range of the
same parameter for chaos in its integer-order counterpart
plotted in reference [43] is an advantage for the first, in
secure communication.

3 Finite-time adaptive synchronization
of fractional-order two-component oscillators

3.1 Preliminaries

In this section, the finite-time adaptive synchroniza-
tion of two identical simplest two-component oscillators
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Fig. 4. Various graphs plotted for the couple of control param-
eters (E = 4 V, q = 0.96): (a) power spectrum of the fractional-
order two-component oscillator confirming the high frequency
oscillatory nature of the circuit under study; (b) Poincaré map
plotted in the (VGS − i2) plane for VGD = 0.6 V, proving the
chaotic behavior of the oscillator; (c) (VGS −VGD) plane phase
portrait for the above values of the parameters.

is investigated under consideration of the following mas-
ter system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqV m
GS

dtq
= 1

CGS
(−im1 + im2 − imD − Im

d )

dqV m
GD

dtq
= 1

CGD
(−im2 + Im

d )

dqim1
dtq

= 1
L1

V m
GS

dqim2
dtq

= 1
L2

(−V m
GS + V m

GD + E)

(4)

and the corresponding slave system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqV s
GS

dtq = 1
CGS

(−is1 + is2 − isD − Is
d

−ξsign(V s
GS − V m

GS) − ξu(t))

dqV s
GD

dtq
= 1

CGD
(−is2 + Is

d)

dqis1
dtq

= 1
L1

V s
GS

dqis2
dtq

= 1
L2

(−V s
GS + V s

GD + E) .

(5)

The term −ξsign(V s
GS−V m

GS)−ξu(t) represents the nonlin-
ear controller, where u(t) is the adaptive feedback coupling
designed to achieve finite-time synchronization, while the
remainder parts contribute to synchronize both master
and slave oscillators at an established time as well as to
stabilize the response dynamics.

Let the error function be defined as: e1(t) = V s
GS(t) −

V m
GS(t), e2(t) = V s

GD(t)−V m
GD(t), e3(t) = is1(t)− im1 (t) and

e4(t) = is2(t)−im2 (t). The error dynamical system resulting
from equations (4) and (5) can be written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqe1

dtq
= 1

CGS
(−e3 + e4 − (isD − imD) − (Is

d − Im
d )

−ξsign(e1) − ξu(t))

dqe2

dtq
= 1

CGD
(−e4 + (Is

d − Im
d ))

dqe3

dtq
= 1

L1
e1

dqe4

dtq
= 1

L2
(−e1 + e2) .

(6)

Setting φ1 = (isD − imD) and φ2 = (Is
d − Im

d ), equation (6)
becomes:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqe1

dtq
= 1

CGS
(−e3 + e4 − φ1 − φ2 − ξsign(e1) − ξu(t))

dqe2

dtq
= 1

CGD
(−e4 + φ2)

dqe3

dtq
= 1

L1
e1

dqe4

dtq
= 1

L2
(−e1 + e2) .

(7)
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The slave system (5) synchronizes with the master sys-
tem (4) in a finite-time if and only if it exists a final time
tr such that lim

t→tr

‖ei(t)‖ = 0 with i = 1, . . . , 4.

Assumption 1: The nonlinear functions vectors
φ1(e1, e2), and φ2(e1, e2) with φ1(0, 0) = φ2(0, 0) = 0 re-
spect the Lipschitz condition, if and only if it exists two
positive scalars numbers χ1 and χ2 respectively such that:
||φ1(e1, e2)|| ≤ χ1||e1(t)|| and ||φ2(e1, e2)|| ≤ χ2||e2(t)||.

Assumption 2: Considering two vectors X and Y , it
exists three positive scalars numbers χ1, χ2 and η such
that: χ1XXT + χ2XY + χ2Y Y T ≤ ηY Y T .

3.2 Main results

Theorem 1: For master system (4) and slave system (5),
if we choose the adaptive feedback controller u(t) as:

Dqu =
Γ (2 − q)

Γ (2)
uq−1

(
ξ |e1| + ξe1u − ηe2

1 − β
)
sign(u)

(8)
with β a positive constant, then the two dynamic sys-
tems (4) and (5) will enter into a state of synchronization
after a finite-time depending on β and according to the
relation:

tqr ≤ 1
2β

(
CGSe2

1 (0) + CGDe2
2 (0) + L1e

2
3 (0)

+L2e
2
4 (0)

)
+

|u (0)|
β

. (9)

Proof: Consider the following Lyapunov candidate
function:

V = (1/2)eWeT + |u(t)| (10)

where W is a symmetric positive definite real matrix, cho-

sen as W =

⎛

⎜
⎝

CGS 0 0 0
0 CGD 0 0
0 0 L1 0
0 0 0 L2

⎞

⎟
⎠ .

The corresponding J function for this Lyapunov func-
tion is:

J = eT W (Dqe) + Dq |u(t)| . (11)

Exploiting equations (7) and (11), J can be expanded as:

J = −φ1e1 − φ2e1 − ξ |e1| − ξe1u + φ2e2

+
Γ (2)

Γ (2 − q)
u1−qsign(u)Dqu. (12)

Using assumption 1, equation (12) can be rewritten as:

J ≤ χ1e
2
1 + χ2 |e1| |e2| + χ2e

2
2 − ξ |e1| − ξe1u

+
Γ (2)

Γ (2 − q)
u1−qsign(u)Dqu. (13)

Taking advantage on assumption 2, equation (13)
becomes:

J ≤ ηe2
1 − ξ |e1| − ξe1u +

Γ (2)
Γ (2 − q)

u1−qsign(u)Dqu. (14)

If it exists a positive constant β such that:

J ≤ −β ≤ 0, (15)

then the update law for the controller u(t) is designed
through the following relation:

Dqu =
Γ (2 − q)

Γ (2)
uq−1

(
ξ |e1| + ξe1u − ηe2

1 − β
)
sign(u).

(16)
For fractional-order q = 1 the J function becomes the
differentiation of the Lyapunov function (J = V̇ ). The
theoretical finite-time for synchronization is obtained by
integrating equation (15) from 0 to t1r. Thus,

t1r ≤ 1
2β

(
CGSe2

1 (0) + CGDe2
2 (0) + L1e

2
3 (0) + L2e

2
4 (0)

)

+
|u (0)|

β
. (17)

For 0 < q < 1, it has been shown in the litera-
ture that the fractional controller leads faster to syn-
chronization than the integer controller [22]. It can be
concluded that the theoretical finite-time (tqr) for syn-
chronization of fractional-order simplest two-component
oscillators is shorter than the finite-time for syn-
chronization of the same oscillators when q = 1.
Therefore the trajectories of slave fractional-order two-
component oscillator converge to that of the mas-
ter oscillator in the finite-time tqr, given by tqr ≤
1
2β

(
CGSe2

1 (0) + CGDe2
2 (0) + L1e

2
3 (0) + L2e

2
4 (0)

)
+ |u(0)|

β .
Thus the proof is completed.

3.3 Numerical simulation

In this section, the effectiveness and applicability of the
proposed finite-time approach is shown. For this simula-
tion, the approximate numerical technique for numerical
solving of fractional-order differential equation proposed
by Diethelm et al. in [50] is used, which is a generalization
of the Adams-Bashforth-Moulton algorithm for ordinary
differential equations.

A graphical representation of the synchronization pro-
cess obtained numerically by carrying out a direct numer-
ical integration on Matlab-Simulink of systems (4), (5)
and (8) is provided by Figure 5. The initial conditions for
master and slave are respectively: (V m

GS , V m
GD, im1 , im2 )T =

(−1.25 V, –2.5 V, 1 μA, 1 μA)T , and (V s
GS , V s

GD, is1, i
s
2)

T =
(0 V, 0 V, 2 μA, 2 μA)T , with u(0) = 1.6 ηA. To guar-
antee the existence of chaos in the fractional-order two-
component oscillator, other parameters are chosen to be
ξ = 0.0001, β = 0.002, E = 4 V and the fractional-
order q = 0.96. The remaining parameters of systems (4)
and (5) are taken as in the first section. Under these con-
ditions the theoretical settled time worth tqrTH = 0.8 μs.
Figure 5a presents the dynamic errors of synchronization
between the voltages gate-source and gate-drain of the
slave oscillator and their equivalent voltages in the mas-
ter oscillator, while Figure 5b depicts the dynamic errors
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Fig. 5. Dynamics of synchronization errors (a) on the voltage
variables e1 = V s

GS − V m
GS (solid line) and e2 = V s

GD − V m
GD

(dashed line) as well as (b) on the current variables e3 = is1−im1
(solid line) and e4 = is2 − im2 (dashed line). Graph (c) depicts
the time history of the controller u(t), where the numerical
finite-time for synchronization is tq

rNU = 0.2 µs. All the curves
are simulated for q = 0.96 and E = 4 V.
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Fig. 6. Time evolution of synchronization errors e (t) =√
e2
1 + e2

2 + e2
3 + e2

4 for different values of fractional-order q = 1
(blue), q = 0.98 (green), and q = 0.96 (red) when the bias
voltage source is kept at E = 4 V. It can be noted that
the numerical finite-time of synchronization decreases with the
fractional-order.

of synchronization between the current flowing through
the inductor parts L1 and L2 of the slave oscillator and
the corresponding current in the master one. These graphs
show that the numerical finite-time of synchronization is
tqrNU = 0.2 μs, which respects the finite-time condition
trNU ≤ trTH [47]. Figure 5c gives the time evolution of
the adaptive feedback controller u(t) which exponentially
decreases towards a stable state just before the numerical
finite-time synchronization trNU is reached.

The time evolution of the dynamical synchronization
errors e (t) =

√
e2
1 + e2

2 + e2
3 + e2

4 is represented (Fig. 6)
for different values of the fractional-order q, distinguish-
able by different colors: blue (q = 1), green (q = 0.98), and
red (q = 0.96). It can be noted that the numerical finite-
time of synchronization decreases with the fractional-order
q, which confirms the theoretical result as well as the re-
sult given by the literature, where it is mentioned that
the synchronization of fractional-order chaotic systems is
faster than that of integer order chaotic systems [22].

4 Application to digital cryptography

4.1 Algorithm description

Consider the master oscillator (4) as sender and the slave
oscillator (5) as receiver. The laps time between sending
and receiving the message must be greater than tqrTH .
Therefore, after the laps time tqrTH , sender and receiver
must choose the values of the variable V m

GS respectively
V s

GS , to get the secret keys. The elements of the Fibonacci
Q matrix are used to generate the needed secret keys. It
can be referred to references [51–55] for more details on
the theory of Fibonacci numbers. The nth power of the Q
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Fig. 7. Schematics of the master and slave control systems.

matrix is defined as:

Qn =
(

Fn+1 Fn

Fn Fn−1

)

. (18)

Here the Fibonacci numbers Fn, n ≥ 3 is defined by
Fn+1 = Fn + Fn−1, taking into account that the initials
terms are F0 = 0 and F1 = F2 = 1.

The plaintext (p) and the corresponding ciphertext
(c) can be divided into message sequences or units of
2×2 square matrixes. The assignment of numbers to mes-
sage units respects the ASCII code table. The ciphertext
and decrypted message corresponding to the assignment
of numbers can be obtained according to the following
system: {

c = p + k(mod128)

p = c − k(mod128).
(19)

The secret keys for the sender and receiver respectively
can now be written as ks = [F · t · |V m

GS | · q](mod128) and
kr = [F · t · |V s

GS | · q](mod128). F stands for the frequency
of the fractional chaotic oscillator, meanwhile the term
in bracket, say [�] denotes the integer part of �, and |σ|
would correspond to the modulus value of the variable σ.
The rest of the algorithm remains the same as defined in
reference [22]. Note that in contrary to [22], we performed
finite-time synchronization which is more appropriate for
digital cryptography. The master oscillator slave oscillator
configuration is presented in Figure 7.

4.2 Numerical example

Consider the test message “2 YEARS OLD” that has to be
transmitted. It has eleven message units including blanks.

To set 2 × 2 square matrixes constituting the plaintext
blocks, it is necessary that the test message length be a
multiple of four. This can be achieved if one supplemen-
tary blank space is inserted at the end of the above test
message which length will become twelve and therefore, a
multiple of four. Consequently, sequences of message units
will be put in 2 × 2 square matrix blocks, say M1 for the
four first plaintext, M2 for the second four and M3 for
the last. The transcription of those matrixes using ASCII
code becomes:

M1 =
(

50 32
89 69

)

, M2 =
(

65 82
83 32

)

, M3 =
(

79 76
68 32

)

.

At t1 = 1μs (t1 > tqrTH), corresponding to V m
GS =

0.2264 V, a secret key ks = [F · t · |V m
GS | · q](mod128) =

[150 × 106 × 10−6 × (0.2264) × (0.96)] = 32(mod128) for
the sender is built and the first block of message unit M1

is sent. The Fibonacci number corresponding to that first

block is then Q32 =
(

F33 F32

F32 F31

)

=
(

3524578 2178309
2178309 1346269

)

,

hence the first four keys are: k1s = F33(mod128) = 98,
k2s = k3s = F32(mod128) = 5, k4s = F31(mod128) = 93.
It follows the ciphertext below

(
c1 c2

c3 c4

)

=
(

p1 p2

p3 p4

)

+
(

k1s k2s

k3s k4s

)

=
(

148 37
94 162

)

.

At the reception end the secret key for the decoding of
the test message is kr = [F · t · |V s

GS | · q](mod128) = [150 ·
106 × 10−6 × (0.2264) × (0.96)](mod128) = 32(mod128).
The receiver can decode the message as it follows, using
equation (19):

(
p1 p2

p3 p4

)

=
(

c1 c2

c3 c4

)

−
(

k1r k2r

k3r k4r

)

=
(

50 32
89 69

)

.
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Table 1. Details of sending and receiving a text message.

Time t |V m
GS | Plaintext p Keys ks Ciphertext c |V s

GS | Keys kr Plaintext recovered
1 µs 0.2264 V 2 (50) k1s = 98 149 0.2264 V k1r = 98 50 (2)

- (32) k2s = 5 37 k2r = 5 32 (–)
Y (89) k3s = 5 94 k3r = 5 89(Y)
E (69) k4s = 93 162 k4r = 93 69 (E)

2 µs 0.57 V A (65) k1s = 121 186 0.57 V k1r = 121 65 (A)
R (82) k2s = 48 130 k2r = 48 82 (R)
S (83) k3s = 48 131 k3r = 48 83(S)
- (32) k4s = 73 105 k4r = 73 32 (–)

3 µs 0.1738 V O (79) k1s = 83 162 0.1738 V k1r = 83 79 (O)
L (76) k2s = 66 142 k2r = 66 76 (L)
D (68) k3s = 66 134 k3r = 66 68(D)
- (32) k4s = 17 49 k4r = 17 32 (–)

Table 2. Effect of time t on the digital cryptography for q = 0.96.

Time t |V m
GS | Plaintext p Keys ks Ciphertext c |V s

GS | Keys kr Plaintext recovered
0.038 µs 0.91 V 2 (50) k1s = 5 55 0.4716 V k1r = 2 53 (5)

- (32) k2s = 3 35 k2r = 1 34 (”)
Y (89) k3s = 3 92 k3r = 1 91([)
E (69) k4s = 2 71 k4r = 1 70 (F)

0.2 µs 0.4627 V 2 (50) k1s = 121 171 0.4627 V k1r = 121 50 (2)
- (32) k2s = 105 137 k2r = 105 32 (–)
Y (89) k3s = 105 194 k3r = 105 89(Y)
E (69) k4s = 16 85 k4r = 16 69 (E)

The complete procedure of sending and recovering the
message is summarized in Table 1.

4.3 Effect of the variable time on cryptography

The variables V m
GS and V s

GS proceed from the time depen-
dent fractional-order chaotic systems operating at high
frequency. Table 2 shows the effect of the variable t on
cryptography when the fractional-order is fixed at q =
0.96. In this table we experienced two values of time: for
t1 = 0.038 μs, less than the finite-time of synchronization
(see Fig. 5), we observed that the synchronization between
the drive and the response systems is not established, be-
cause a non-zero difference between V m

GS and V s
GS do ex-

ist. This difference between the states of the master and
those of the slave leads to a difference between the sending
keys and the receive keys. The consequence is direct: the
recovered message is different from the transmitted one.
On the other hand when t1 = 0.2 μs is chosen greater
than the finite-time of synchronization, the states of mas-
ter V m

GS and slave V s
GS are quite identical. Consequently,

the received keys coincide now with those of sending and
the plaintext recovered on arrival is the same as the sent
plaintext p. These results show the importance of control
at finite-time of synchronization and confirm the effective-
ness of our model.

4.4 Effect of fractional-order on cryptography

Here we study the effect of fractional-order q on the digital
cryptography when the time value is fixed at t1 = 0.2 μs.

Table 3 shows that the plaintext is recovered solely in the
case where the fractional-order worths q = 0.96, because
this is the only case in which the states both of the master
V m

GS and of the slave V s
GS are identical. This result can be

explained by the fact that for q = 0.98 and q = 1 the time
t1 = 0.2 μs is less than the finite-time of synchronization
(Fig. 5).

5 Conclusions

In this paper, the problem of finite-time synchronization
of fractional-order simplest two-component chaotic oscilla-
tor operating at high frequency and application to digital
cryptography was studied. An efficient finite-time adap-
tive controller was introduced, on the basis of fractional
Lyapunov stability theory. An estimation of the conver-
gence time was also given. Numerical simulation were
performed and given to confirm our theoretical analysis.
Furthermore, it was shown that the synchronization of
fractional-order systems is faster than that of integer ones.
Finally, a proposed key systems for cryptographic encryp-
tion scheme with the help of the finite-time synchroniza-
tion of fractional-order systems was illustrated through a
numerical example, showing that a high level security can
be produced.

From the security analysis of the proposed key system,
we conclude that the proposed key system in the present
paper is an improvement of the key system proposed in
reference [22]. Indeed through the secret elements V m

GS ,
V s

GS , t, and q we also control the time of synchronization
which is an additional advantage as presented in Section 4.
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Table 3. Effect of fractional-order q on the digital cryptography for t = 0.2µ.

q |V m
GS | Plaintext p Keys ks Ciphertext c |V s

GS | Keys kr Plaintext recovered
0.96 0.4627 V 2 (50) k1s = 121 171 0.4627 V k1r = 121 50 (2)

- (32) k2s = 105 137 k2r = 105 32 (–)
Y (89) k3s = 105 194 k3r = 105 89(Y)
E (69) k4s = 16 85 k4r = 16 69 (E)

0.98 0.512 V 2 (50) k1s = 85 135 0.613 V k1r = 91 44 (,)
- (32) k2s = 24 56 k2r = 98 –42 ()
Y (89) k3s = 24 113 k3r = 98 15(C-o)
E (69) k4s = 61 130 k4r = 121 7 (C-g)

1 1.295 V 2 (50) k1s = 85 135 0.61 V k1r = 34 101 (e)
- (32) k2s = 24 56 k2r = 41 15 (C-o)
Y (89) k3s = 24 113 k3r = 41 89(H)
E (69) k4s = 61 130 k4r = 121 69 (C-i)

It is also worth noticing that the introduced fractional
control method can be applied to control a large class of
uncertain nonlinear fractional-order dynamical systems in
finite time.
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