Skip to main content
Log in

Edge states in a two-dimensional quantum walk with disorder

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the effect of spatial disorder on the edge states localized at the interface between two topologically different regions. Rotation disorder can localize the quantum walk if it is strong enough to change the topology, otherwise the edge state is protected. Nonlinear spatial disorder, dependent on the walker’s state, attracts the walk to the interface even for very large coupling, preserving the ballistic transport characteristic of the clean regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.P. Feynman, Fondations of Physics 16, 507 (1986), originally appeared in the February 1985 issue of Optics News

    Article  ADS  Google Scholar 

  2. Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  3. D.A. Meyer, J. Stat. Phys. 85, 551 (1996)

    Article  ADS  Google Scholar 

  4. J. Kempe, Contemporary Phys. 44, 307 (2003)

    Article  ADS  Google Scholar 

  5. S.E. Venegas-Andraca, Quantum Information Processing 11, 1015 (2012)

    Article  MathSciNet  Google Scholar 

  6. T. Kitagawa, Quantum Information Processing 11, 1107 (2012)

    Article  MathSciNet  Google Scholar 

  7. G. Bianconi, Europhys. Lett. 111, 56001 (2015)

    Article  ADS  Google Scholar 

  8. T. Kitagawa, M.S. Rudner, E. Berg, E. Demler, Phys. Rev. A 82, 033429 (2010)

    Article  ADS  Google Scholar 

  9. J.K. Asbóth, Phys. Rev. B 86, 195414 (2012)

    Article  ADS  Google Scholar 

  10. J.K. Asbóth, H. Obuse, Phys. Rev. B 88, 121406 (2013)

    Article  ADS  Google Scholar 

  11. A. Schreiber, K.N. Cassemiro, V. Potocek, A. Gabris, I. Jex, C. Silberhorn, Phys. Rev. Lett. 106, 180403 (2011)

    Article  ADS  Google Scholar 

  12. J. Svozilík, J., R.d. J. León-Montiel, J.P. Torres, Phys. Rev. A 86, 052327 (2012)

    Article  ADS  Google Scholar 

  13. P. Xue, R. Zhang, Z. Bian, X. Zhan, H. Qin, B.C. Sanders, Phys. Rev. A 92, 042316 (2015)

    Article  ADS  Google Scholar 

  14. T. Rakovszky, J.K. Asboth, Phys. Rev. A 92, 052311 (2015)

    Article  ADS  Google Scholar 

  15. J.M. Edge, J.K. Asboth, Phys. Rev. B 91, 104202 (2015)

    Article  ADS  Google Scholar 

  16. T. Kitagawa, M.A. Broome, A. Fedrizzi, M.S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, A.G. White, Nat. Commun. 3, 882 (2012)

    Article  ADS  Google Scholar 

  17. R. Prange, S. Girvin, A. Chang, F. Duncan, R. Laughlin, A. Pruisken, D. Thouless, The Quantum Hall Effect, Graduate Texts in Contemporary Physics, 2nd edn. (Springer, New York, 1990)

  18. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  19. H. Obuse, J.K. Asbóth, Y. Nishimura, N. Kawakami, Phys. Rev. B 92, 045424 (2015)

    Article  ADS  Google Scholar 

  20. A.P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, Phys. Rev. B 78, 195125 (2008)

    Article  ADS  Google Scholar 

  21. T.A. Brun, H.A. Carteret, A. Ambainis, Phys. Rev. Lett. 91, 130602 (2003)

    Article  ADS  Google Scholar 

  22. A. Ahlbrecht, V.B. Scholz, A.H. Werner, J. Math. Phys. 52, 102201 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Obuse, N. Kawakami, Phys. Rev. B 84, 195139 (2011)

    Article  ADS  Google Scholar 

  24. C. Navarrete-Benlloch, A. Pérez, E. Roldán, Phys. Rev. A 75, 062333 (2007)

    Article  ADS  Google Scholar 

  25. G. Di Molfetta, F. Debbasch, M. Brachet, Phys. Rev. E 92, 042923 (2015)

    Article  ADS  Google Scholar 

  26. C.W. Lee, P. Kurzynski, H. Nha, Phys. Rev. A 92, 052336 (2015)

    Article  ADS  Google Scholar 

  27. Y. Gerasimenko, B. Tarasinski, C.W.J. Beenakker, Phys. Rev. A 93, 022329 (2016)

    Article  ADS  Google Scholar 

  28. G. Di Molfetta, F. Debbasch, J. Math. Phys. 53, 123302 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Jackiw, Phys. Rev. D 29, 2375 (1984)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto D. Verga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verga, A.D. Edge states in a two-dimensional quantum walk with disorder. Eur. Phys. J. B 90, 41 (2017). https://doi.org/10.1140/epjb/e2017-70433-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70433-1

Keywords

Navigation