Skip to main content
Log in

Ballistic induced pumping of hypersonic heat current in DNA nano wire

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Nitzan, Science 317, 759 (2007)

    Article  Google Scholar 

  2. L. Wang, B. Li, Physics World 21, 27 (2008)

    Article  Google Scholar 

  3. M. Terraneo, M. Peyrard, G. Casati, Phys. Rev. Lett. 88, 094302 (2002)

    Article  ADS  Google Scholar 

  4. T. Shah, P. Gajjar, Eur. Phys. J. B 86, 497 (2013)

    Article  ADS  Google Scholar 

  5. B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  6. L. Wang, B. Li, Phys. Rev. Lett. 99, 177208 (2007)

    Article  ADS  Google Scholar 

  7. L. Wang, B. Li, Phys. Rev. Lett. 101, 267203 (2008)

    Article  ADS  Google Scholar 

  8. D. Segal, A. Nitzan, Phys. Rev. E 73, 026109 (2006)

    Article  ADS  Google Scholar 

  9. L. Yu, R. Chen, L. Nie, Eur. Phys. J. B 88, 1 (2015)

    Article  ADS  Google Scholar 

  10. Y. Zhang, B. Lin, J. Chen, Eur. Phys. J. B 53, 481 (2006)

    Article  ADS  Google Scholar 

  11. C. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006)

    Article  ADS  Google Scholar 

  12. W. Kobayashi, Y. Teraoka, I. Terasaki, Appl. Phys. Lett. 95, 171905 (2009)

    Article  ADS  Google Scholar 

  13. C.W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, Phys. Rev. Lett. 99, 045901 (2007)

    Article  ADS  Google Scholar 

  14. R. Marathe, A. Jayannavar, A. Dhar, Phys. Rev. E 75, 030103 (2007)

    Article  ADS  Google Scholar 

  15. N. Nakagawa, T.S. Komatsu, Europhys. Lett. 75, 22 (2006)

    Article  ADS  Google Scholar 

  16. D. Segal, A. Nitzan, Phys. Rev. E 73, 026109 (2006)

    Article  ADS  Google Scholar 

  17. D. Segal, Phys. Rev. Lett. 101, 260601 (2008)

    Article  ADS  Google Scholar 

  18. Y. Wei, L. Wan, B. Wang, J. Wang, Phys. Rev. B 70, 045418 (2004)

    Article  ADS  Google Scholar 

  19. D. Segal, J. Chem. Phys. 130, 134510 (2009)

    Article  ADS  Google Scholar 

  20. J. Che, T. Cagin, W.A. Goddard III, Nanotechnology 11, 65 (2000)

    Article  ADS  Google Scholar 

  21. M. Alaghemandi, E. Algaer, M.C. Böhm, F. Müller-Plathe, Nanotechnology 20, 115704 (2009)

    Article  ADS  Google Scholar 

  22. M.A. Osman, D. Srivastava, Nanotechnology 12, 21 (2001)

    Article  ADS  Google Scholar 

  23. G. Zhang, B. Li, J. Chem. Phys. 123, 114714 (2005)

    Article  ADS  Google Scholar 

  24. B.Q. Ai, M. An, W.R. Zhong, J. Chem. Phys. 138, 034708 (2013)

    Article  ADS  Google Scholar 

  25. D. Segal, A. Nitzan, P. Hänggi, J. Chem. Phys. 119, 6840 (2003)

    Article  ADS  Google Scholar 

  26. D.M. Leitner, J. Phys. Chem. B 117, 12820 (2013)

    Article  Google Scholar 

  27. E.H. Backus, P.H. Nguyen, V. Botan, R. Pfister, A. Moretto, M. Crisma, C. Toniolo, G. Stock, P. Hamm, J. Phys. Chem. B 112, 9091 (2008)

    Article  Google Scholar 

  28. E.H. Backus, R. Bloem, R. Pfister, A. Moretto, M. Crisma, C. Toniolo, P. Hamm, J. Phys. Chem. B 113, 13405 (2009)

    Article  Google Scholar 

  29. X. Yu, D.M. Leitner, J. Phys. Chem. B 107, 1698 (2003)

    Article  Google Scholar 

  30. B. Van Grinsven, N. Vanden Bon, H. Strauven, L. Grieten, M. Murib, K.L. Jimenez Monroy, S.D. Janssens, K. Haenen, M.J. Schoning, V. Vermeeren et al., ACS Nano 6, 2712 (2012)

    Article  Google Scholar 

  31. C. Guo, K. Wang, E. Zerah-Harush, J. Hamill, B. Wang, Y. Dubi, B. Xu, Nat. Chem. 8, 484 (2016)

    Article  Google Scholar 

  32. S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W.M. Shih, Nature 459, 414 (2009)

    Article  ADS  Google Scholar 

  33. M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62, 2755 (1989)

    Article  ADS  Google Scholar 

  34. A.V. Savin, M.A. Mazo, I.P. Kikot, L.I. Manevitch, A.V. Onufriev, Phys. Rev. B 83, 245406 (2011)

    Article  ADS  Google Scholar 

  35. C.C. Chien, K.A. Velizhanin, Y. Dubi, M. Zwolak, Nanotechnology 24, 095704 (2013)

    Article  ADS  Google Scholar 

  36. K.A. Velizhanin, C.C. Chien, Y. Dubi, M. Zwolak, Phys. Rev. E 83, 050906 (2011)

    Article  ADS  Google Scholar 

  37. T. Kodama, A. Jain, K.E. Goodson, Nano Lett. 9, 2005 (2009)

    Article  ADS  Google Scholar 

  38. M. Peyrard, Europhys. Lett. 76, 49 (2006)

    Article  ADS  Google Scholar 

  39. L.V. Yakushevich, Nonlinear Physics of DNA (John Wiley & Sons, 2006)

  40. S. Behnia, A. Akhshani, M. Panahi, A. Mobaraki, M. Ghaderian, Phys. Lett. A 376, 2538 (2012)

    Article  ADS  Google Scholar 

  41. T. Dauxois, M. Peyrard, A.R. Bishop, Phys. Rev. E 47, R44 (1993)

    Article  ADS  Google Scholar 

  42. N.K. Voulgarakis, A. Redondo, A.R. Bishop, K. Rasmussen, Phys. Rev. Lett. 96, 248101 (2006)

    Article  ADS  Google Scholar 

  43. G. Weber, J.W. Essex, C. Neylon, Nat. Phys. 5, 769 (2009)

    Article  Google Scholar 

  44. D.J. Evans, B.L. Holian, J. Chem. Phys. 83, 4069 (1985)

    Article  ADS  Google Scholar 

  45. R.C. Hilborn, Chaos and nonlinear dynamics: an introduction for scientists and engineers (Oxford University Press, 2000)

  46. H. Hentschel, I. Procaccia, Physica D 8, 435 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  47. P. Grassberger, Phys. Lett. A 97, 227 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  48. P. Grassberger, I. Procaccia, Physica D 13, 34 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  49. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  50. E. Canessa, J. Phys. A 33, 3637 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  51. S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  52. J. Ren, B. Li, Phys. Rev. E 81, 021111 (2010)

    Article  ADS  Google Scholar 

  53. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee et al., Science 320, 634 (2008)

    Article  ADS  Google Scholar 

  54. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012)

    Article  ADS  Google Scholar 

  55. R. Venkatasubramanian, Nature 463, 619 (2010)

    Article  ADS  Google Scholar 

  56. S. Volkov, A. Kosevich, Journal of Biomolecular Structure and Dynamics 8, 1069 (1991)

    Article  Google Scholar 

  57. H. Urabe, Y. Tominaga, K. Kubota, J. Chem. Phys. 78, 5937 (1983)

    Article  ADS  Google Scholar 

  58. M. Tsurkan, N. Balbekin, E. Sobakinskaya, A. Panin, V. Vaks, Opt. Spectrosc. 114, 894 (2013)

    Article  ADS  Google Scholar 

  59. B. Fischer, M. Walther, P.U. Jepsen, Phys. Med. Biol. 47, 3807 (2002)

    Article  Google Scholar 

  60. B. Vermeersch, J. Carrete, N. Mingo, A. Shakouri, Phys. Rev. B 91, 085202 (2015)

    Article  ADS  Google Scholar 

  61. B.Q. Ai, D. He, B. Hu et al., Phys. Rev. E 81, 031124 (2010)

    Article  ADS  Google Scholar 

  62. N. Li, P. Hänggi, B. Li, Europhys. Lett. 84, 40009 (2008)

    Article  ADS  Google Scholar 

  63. N. Li, F. Zhan, P. Hänggi, B. Li, Phys. Rev. E 80, 011125 (2009)

    Article  ADS  Google Scholar 

  64. F. Geniet, J. Leon, Phys. Rev. Lett. 89, 134102 (2002)

    Article  ADS  Google Scholar 

  65. R. Khomeriki, S. Lepri, S. Ruffo, Phys. Rev. E 70, 066626 (2004)

    Article  ADS  Google Scholar 

  66. S. Zhang, J. Ren, B. Li et al., Phys. Rev. E 84, 031122 (2011)

    Article  ADS  Google Scholar 

  67. D. Bagchi, J. Stat. Mech.: Theory and Experiment 2013, P12005 (2013)

    Article  MathSciNet  Google Scholar 

  68. N.C. Seeman, Nano Lett. 10, 1971 (2010)

    Article  ADS  Google Scholar 

  69. B. Yurke, A.J. Turberfield, A.P. Mills, F.C. Simmel, J.L. Neumann, Nature 406, 605 (2000)

    Article  ADS  Google Scholar 

  70. C. Mao, W. Sun, Z. Shen, N.C. Seeman, Nature 397, 144 (1999)

    Article  ADS  Google Scholar 

  71. J.K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Nat. Nanotechnol. 5, 718 (2010)

    Article  ADS  Google Scholar 

  72. S. Lee, D.G. Cahill, R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997)

    Article  ADS  Google Scholar 

  73. J. Ma, O. Delaire, A. May, C. Carlton, M. McGuire, L. VanBebber, D. Abernathy, G. Ehlers, T. Hong, A. Huq et al., Nat. Nanotechnol. 8, 445 (2013)

    Article  ADS  Google Scholar 

  74. X. Tian, M.E. Itkis, E.B. Bekyarova, R.C. Haddon, Sci. Rep. 3, 1710 (2013)

    ADS  Google Scholar 

  75. E. Pop, V. Varshney, A.K. Roy, MRS Bulletin 37, 1273 (2012)

    Article  Google Scholar 

  76. P. Bampoulis, M.H. Siekman, E.S. Kooij, D. Lohse, H.J. Zandvliet, B. Poelsema, J. Chem. Phys. 143, 034702 (2015)

    Article  ADS  Google Scholar 

  77. D. Schneider, N. Gomopoulos, C.Y. Koh, P. Papadopoulos, F. Kremer, E.L. Thomas, G. Fytas, Nat. Mater. 15, 1079 (2016)

    Article  ADS  Google Scholar 

  78. M. Maldovan, Phys. Rev. Lett. 110, 025902 (2013)

    Article  ADS  Google Scholar 

  79. N. Li, P. Hänggi, B. Li, Europhys. Lett. 84, 40009 (2008)

    Article  ADS  Google Scholar 

  80. Y.J. Chen, B. Groves, R.A. Muscat, G. Seelig, Nat. Nanotechnol. 10, 748 (2015)

    Article  ADS  Google Scholar 

  81. S.F. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka, H. Sugiyama, A.J. Turberfield, Nat. Nanotechnol. 7, 169 (2012)

    Article  ADS  Google Scholar 

  82. T. Omabegho, R. Sha, N.C. Seeman, Science 324, 67 (2009)

    Article  ADS  Google Scholar 

  83. M. Maldovan, Nature 503, 209 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Behnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnia, S., Panahinia, R. Ballistic induced pumping of hypersonic heat current in DNA nano wire. Eur. Phys. J. B 89, 263 (2016). https://doi.org/10.1140/epjb/e2016-70490-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70490-x

Keywords

Navigation