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Abstract. We consider a group of agents playing the Hawk-Dove game. These agents have a finite memory
of past interactions which they use to optimize their play. By both analytical and numerical approaches,
we show that an instability occurs at a critical memory length, and we provide its characterization. We
show also that when the game is stable, having a long memory is beneficial but that instability, which may
be produced by excessively long memory, hands the advantage to those with shorter memories.

1 Introduction

In the world of living creatures, some species behave ag-
gressively to obtain resources; others adopt a more con-
servative attitude in order to minimize their potential in-
curred costs, such as injuries. This phenomenon was first
characterized mathematically by J. Maynard Smith in
1973 [1] in the Hawk-Dove game model, where aggres-
sive “hawks” compete with peaceful “doves” for survival.
The model is related to the game “chicken” as well as the
“Prisoner’s Dilemma”, and they have been the subject of
serious research in game theory [2,3]. In general, the Hawk-
Dove game can be regarded as a typical anti-coordination
game, all of which have three Nash equilibria, two of which
consist of pure strategies and a third of mixed strategies.
The Hawk-Dove model has been successfully applied to
explore animal behaviour and its evolution [4,5]. For ex-
ample, recently it has been used to explain colour poly-
morphism in Gouldian finches which have red (aggressive)
and black (passive) variants [6]. Many applications exist
outside of biology. A “quantum” Hawk-Dove game [7],
based on the recent financial crisis, leads to new evolu-
tionary stable strategies which are non aggressive. In so-
cial science, a Hawk-Dove game approach may be used to
manage customer expectation, and thus help firms achieve
better financial performance [8]. The game has been used
in political science to investigate international relations in
a number of ways [9].

This paper explores memory effects in the classical
Hawk-Dove game. The game is played by a group of agents
who can recall a finite set of past interactions, which they
use to make decisions about their future behaviour. In
games in general, the methods used by agents to make
decisions in competitive situations can have dramatic ef-
fects on the dynamics of strategies [10–13] including the
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creation of limit cycles, chaotic behaviour and noise sus-
tained cycling. In all cases, the nature of agents’ memory
of past experiences plays a role. The presence of mem-
ory naturally leads to delay differential equations [14] for
game dynamics, and the effects of delay on stability have
been studied for a number of evolutionary games [15–17].
The relative weight given to memories from different times
in the past can also be important [11], and the nature of
information recall in humans and animals is still being ex-
plored [18]. The effect on game dynamics of memory based
strategies [19] is also the subject of experimental research
in the ecological context.

We investigate the effect of memory length on game
dynamics and the individual effectiveness of agents when
their memory is used as an imperfect statistical sample
of the population. Our agents use their recollection of a
finite number of past interactions to adjust their proba-
bilistic strategy after each new meeting toward the choice
which, according to their memory, appears optimal. We
have previously discovered in the case of a resource shar-
ing game [20] and “Rock Scissors Paper” [21], that un-
der this continuous updating method, known as “online”
learning (as opposed to “batch” learning [10] where a new
sample is gathered before each new adjustment) there ex-
ists a Hopf bifurcation marking a transition from stable
equilibrium behaviour to regular population–wide strat-
egy oscillations. In each case memory size, m, may be
seen as the bifurcation parameter [20,21] and the analyt-
ical relationship between the critical value mc of memory
and the rate, ε, of strategy adjustment takes the form
mc ∝ εα where α = −1 and α = −1/2 for the sharing and
rock scissor paper games respectively. Here we show that
in the Hawk-Dove game, α = −2/3. For a given ε, typi-
cally �1, a larger α leads to smaller mc, and a potentially
less stable scenario. The appearance of strategy oscilla-
tions has also recently been discovered in delayed replica-
tor dynamics for two strategy games [22]. For sufficiently
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large populations our learning rule also results in a de-
terministic delay equation for the average strategy of the
group. However the form of this equation is quite different
to replicator dynamics, because the statistical properties
of the contents of agents’ memories are explicitly encoded
within it.

Our paper is structured as follows. We first define our
Hawk-Dove game with memory and present our simula-
tion results. We show that the game possesses a stable
fixed point when memory size is sufficiently short, but
that this stability gives way to a limit cycle at critical
memory length. We demonstrate that the appearance of
this cycle destroys the competitive statistical advantage
of a long memory. Finally we derive a deterministic delay
equation for the average strategy of the population and
extract from this an analytical expression for the bifurca-
tion point.

2 Model

The Hawk-Dove game is defined as follows [23]: two agents
have at their disposal some resource such as food, terri-
tory or access to mating opportunities, having numerical
value V . Each agent can choose to offer cooperation and
share the resource, or attempt to aggressively claim it.
A meeting of two aggressors (Hawks) leads to one win-
ner who claims the prize, and one injured party who ex-
periences a cost C; then symmetry dictates that the av-
erage gain to each agent is (V − C)/2. Two cooperators
(Doves) simply share the resource equally, but a Hawk will
leave a Dove with nothing. We therefore have the follow-
ing payoff matrix, where the element in row X , column Y
gives the payoff to strategy X against strategy Y where
X , Y ∈ {H,D}

( H D

H V −C
2 V

D 0 V
2

)
. (1)

A group of L ≥ 2 agents play this Hawk-Dove game in
continuous time. Interactions take place via random pair-
ing between agents at a rate of L/2 per unit time, so that
each agent has one interaction per unit time on average.
At interaction, each agent adopts either Hawk or Dove, ac-
cording to its specific probabilistic strategy, φi(t), defined
as the probability of agent i adopting Hawk at time t.
Each interaction results in a payoff which is memorized
by the pair. Each agent has a memory of the last m of
its interactions, which it uses to adapt its strategy toward
the choice that currently appears to be optimal. If Hi is
the number of Hawks encountered in agent i’s memory
of m interactions, then φ̃i := Hi/m is its estimate of the
average strategy of other agents. If φ̃i were an accurate
measure of the current average probabilistic strategy of
the whole population

φ(t) :=
1
L

L∑
i=1

φi(t) (2)

then given the payoff matrix (1), it is readily verified that
its optimal strategy would be to adopt Hawk if φ̃i <

V
C and

Dove if φ̃i >
V
C . Instead of acting in this way, in our model

the memory φ̃i is used to slowly adjust the probabilistic
strategy φi(t). After each new interaction an agent will
evolve either toward pure Hawk (φi = 1) or toward pure
Dove (φi = 0). The probability of evolving toward Hawk is

p̃(φ̃i) := H
(
V

C
− φ̃i

)
(3)

where H is the Heaviside function, defined using the half-
maximum convention (H(0) = 1

2 ). That is, after an inter-
action, if φ̃i <

V
C then the agent will definitely evolve

towards the pure Hawk strategy; if φ̃i > V
C then the

agent will definitely evolve towards pure Dove, otherwise
if φ̃i = V

C the agent will choose randomly (with equal
probability) which strategy to evolve toward. In a small
time interval δt, an agent has a probability δt + o(δt) of
interacting, so (neglecting terms which are o(δt))

φi(t+ δt) =

⎧⎪⎪⎨
⎪⎪⎩

φi(t) w.p. (1 − δt)

φi(t) + ε[1 − φi(t)] w.p. p̃δt

φi(t) − εφi(t) w.p. (1 − p̃)δt

(4)

where ε ∈ [0, 1] is the “update” or “learning” rate which
regulates how fast agents adapt to change. Note that the
abbreviation w.p. means “with probability”.

Using equation (4) we can compute the expected
change in φi during the interval (t, t + δt]. We condition
on the state of the agent’s memory at time t so, neglecting
any change in φ̃i during the interval

E

[
δφi

δt

∣∣∣∣φ̃i(t)
]

= ε
[
p̃(φ̃i) − φi

]
. (5)

An interaction during the interval (t, t + δt] can change
φ̃i by ±2m−1 so this evolution equation is exact provided
|V/C − φ̃i(t)| > 2m−1, and therefore exact for all φ̃i(t) �=
V/C in the limit m→ ∞.

3 Simulation results

We numerically simulate a population of identical agents.
Figure 1 shows the evolution of probability weight φ(t).
The values of update rate and memory are ε = 5 × 10−3

and m = 101 respectively. For short time t ≈ m, we ob-
serve transient behaviours which decay over a few timesm,
they do not affect the rest of the simulation and are of no
interest here (the same applies to the next figure). For
longer time, we find a stable state with small fluctua-
tions, which may be further suppressed by larger popu-
lation sizes. In Figure 2, the memory length is changed to
m = 151, and the behaviour of the population has changed
to stable strategy oscillations. These oscillations make
their appearance at a critical memory length which de-
pends on the value of ε. A lower update rate (ε) leads
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Fig. 1. Average simulated probability weight of Hawk strategy
in a group of size L = 1000 with V = 1, C = 2. All agents have
memory m = 101 and update rate ε = 5 × 10−3.
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Fig. 2. Continuous black line shows simulated average proba-
bility weight of Hawk strategy in a group of size L = 1000 with
V = 1, C = 2. All agents have memory m = 151 and update
rate ε = 5 × 10−3. Dashed line shows solution to approximate
deterministic delay equation (14).

to a higher critical memory length. This “Hopf Bifurca-
tion” can also be achieved by varying the update rate
with memory length fixed, so either ε or m may be con-
sidered as the bifurcation parameter. We will demonstrate
the relationship between the critical values of update rate
for stable oscillations and agents’ memory lengths analyt-
ically later.

We now consider the relative competitive advantages
of different memory lengths in a population consisting of a
mixture of long memory and short memory agents. When
the strategies of the population are in a stable state, a long
memory is beneficial because it gives a more accurate pic-
ture of your opponents’ strategies. This allows agents to
accurately tune their strategy toward the best possible re-
sponse. However, when an excessive number of agents with
memory lengths above the critical threshold are present
or, equivalently, an excessively large update rate is used,
then oscillations form. Under these circumstances, older
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Fig. 3. Dependence of average payoff per interaction on up-
date rate ε in a mixed population of L = 1000 where 100 agents
have memory m = 10 (solid line) and 900 agents have memory
m = 200 (dashed line). The game parameters are V = 1 and
C = 4. Open circles show amplitude of φ(t); as ε passes through
the bifurcation point, oscillations form and increase in ampli-
tude as ε increases. These oscillations destroy the statistical
advantage of the longer memory agents. Dashed vertical line
shows theoretical bifurcation point (εc ≈ 0.0027) for a system
consisting exclusively of agents with m = 200. Solid vertical
line shows approximate bifurcation point (εc ≈ 0.0038) for this
mixed system.

data loses its value as a predictive tool: it may be better to
sacrifice long memory in order to utilize up-to-date infor-
mation. We illustrate this effect in Figure 3 where we have
estimated the average payoff per interaction for a mixed
population of memory lengths, as a function of the update
rate. This was achieved in a single simulation by recording
a moving average payoff while increasing update rate, ε,
sufficiently slowly so that it was approximately constant
over the time scale of the moving average. As with a pop-
ulation of identical agents, a bifurcation occurs at critical
ε, leading to the formation of strategy oscillations in the
population as a whole. The amplitude of these oscillations
is also shown in the figure and we may estimate the criti-
cal value of ε as the point at which the amplitude begins
to increase rapidly. From Figure 3 we see that the average
payoff for the long memory agents (dashed line) suffers a
clear drop soon after the bifurcation point, and as ε in-
creases, the payoff becomes significantly worse than that
achieved by short memory agents. The effectiveness of the
short memory agents is explained by the fact that they can
adapt quickly to exploit strategy oscillations generated by
the long memory agents. If the system is stable then the
advantage of a long memory is greater for smaller ratios of
V/C because in this case a short memory is more likely to
incorrectly identify the current optimal strategy. We also
emphasise that although oscillations are clearly present
on a population level, estimates of the Hawk fraction ob-
tained from individual agents’ memories will be subject
to fluctuations of order m−1/2 which, in the example of
Figure 3, would make the limit cycle difficult to perceive
for an individual.

The critical value of ε in a mixed memory popula-
tion will be a function of both the proportions of agents
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with each memory, and the lengths of their memories.
While we do not attempt to compute this function, we
see in Figure 3 that the bifurcation point, as determined
by the appearance of oscillations, is above that predicted
for a pure population of agents with m = 200. This is
consistent with a small stabilizing effect provided by the
short memory agents. There are, in principle, other ways
in which a bifurcation can be induced in a mixed popula-
tion: for example at fixed ε, oscillations could be created
by the addition of sufficient numbers of agents with suf-
ficiently long memory (long enough to destabilize them-
selves in isolation). We may conclude that it is useful to
use a lot of historical data to predict the current best
strategy, provided not too many other agents are also do-
ing this, or that the rate at which strategies are updated
is not too fast.

4 Theory

We now return to the case of a population of identical
agents, all with memory m, and derive a deterministic
equation for system dynamics in the limit of large m
and L. This then allows us to characterise system stability.

4.1 Delay equation

To obtain an evolution equation for the average strategy of
the population (2), we average the evolution equation (5)
over all agents

1
L

L∑
i=1

E

[
δφi

δt

∣∣∣∣φ̃i(t)
]

= E

[
δφ(t)
δt

∣∣∣∣
{
φ̃i(t)

}L

i=1

]
(6)

= ε

[
1
L

L∑
i=1

p̃(φ̃i) − φ(t)

]
. (7)

As L → ∞, fluctuations in the stochastic process φ(t)
disappear and it becomes a deterministic function of time
obeying, in the limit δt→ 0

dφ

dt
= ε

[
lim

L→∞
1
L

L∑
i=1

p̃(φ̃i) − φ(t)

]
. (8)

We now seek an expression for the average of p̃(φ̃i) over
the population, in the limit L→ ∞. We therefore require
an expression for the probability distribution of φ̃i for a
randomly selected agent, conditional on the history of the
average strategy of the population φ(t). We first define the
average memory of the population

φ̄m := lim
L→∞

1
L

L∑
i=1

φ̃i. (9)

Note that we have suppressed t dependence here for nota-
tional compactness. For large m, this approaches the time
average of φ(t) over agent memory length so

φ̄m ∼ 1
m

∫ m

0

φ(t − s)ds as m→ ∞, (10)

where ∼ indicates asymptotic equality. This relation is
true asymptotically because at time t, the distribution of
the set of interaction times in the agents’ memories ap-
proaches a uniform distribution on [t −m, t] as m → ∞.
Equation (10) is the time average of φ(t) over this distri-
bution. See reference [21] for a detailed discussion of this
point.

The number H of Hawks observed amongst an agent’s
memory of m interactions will have a probability mass
function P(H = h) which is approximately binomial

P(H = h) ≈ m! φ̄h
m(1 − φ̄m)m−h

h! (m− h)!
=: f(h, φ̄m). (11)

This relationship is an approximation because the proba-
bility of observing a Hawk at each interaction changes over
the course of each agent’s memory. We approximate this
probability as constant and equal to the average φ̄m. The
binomial approximation approaches the true distribution
as m→ ∞ provided φ(t) is constant.

Armed with the approximate probability distribution
of the number of Hawks in an agent’s memory we can
perform the average of p̃(φ̃i) over the population

lim
L→∞

1
L

L∑
i=1

p̃(φ̃i) ≈
m∑

h=0

p̃(h/m)f(h, φ̄m) (12)

=: p(φ̄m). (13)

This defines p(φ̄m), the probability that a randomly se-
lected agent will evolve towards a pure Hawk strategy,
whilst in interaction with a population having time aver-
aged strategy φ̄m. The strategy evolution equation (8) is
therefore

dφ

dt
≈ ε

[
p(φ̄m) − φ

]
(14)

which is a delay equation where φ̄m contains the memory
of the previous time interval [t−m, t]. The equation may
be solved numerically, and an example solution is plotted
in Figure 2, where we see that it closely matches the sim-
ulation. We note that we expect to see small discrepancies
between the delay equation solution and simulation, due
to the finite number of agents (introducing stochasticity
into φ(t)), with finite memory. As noted above, our bino-
mial approximation for the distribution of agent memory
becomes exact in the limit of large m and small fluctu-
ations. However Figure 2 demonstrates that the approx-
imation remains effective when these conditions are not
met.

4.2 Linear stability analysis

In order to determine the critical condition for stability, we
now seek to linearise the delay equation around its fixed
point. For simplicity, we set V = 1, C = 2, and therefore
the fixed point is φ∗ = V

C = 1
2 . We introduce a function

describing fluctuations about this point

ψ(t) := φ(t) − φ∗ = φ(t) − 1
2

(15)
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and its time average

ψ̄m(t) :=
1
m

∫ t

t−m

ψ(τ)dτ. (16)

To evaluate p, as given in equation (13), we replace the
summation with a continuous integral, and we approx-
imate the binomial distribution with a Gaussian distri-
bution [24] of the same mean and variance. Assuming
small fluctuations, ψ(t), this leads to the following linear
approximation

p

(
1
2

+ ψ̄m

)
≈ 1

2
−

√
2m√
π
ψ̄m. (17)

We have verified this approximation by comparing the co-
efficient of ψ̄(t) to the exact values of the derivatives of
p(φ) evaluated at φ = 1

2 . The delay equation (14) is fi-
nally linearised to

1
ε

dψ(t)
dt

= −
√

2m√
π
ψ̄m(t) − ψ(t). (18)

We substitute ψ(t) = eλt as a trial solution to obtain the
characteristic equation

λ2 + ελ+
ε
√

2√
πm

(1 − e−λm) = 0. (19)

Writing λ = x + iy, we separate the real and imaginary
parts of the characteristic equation as follows

x2 − y2 + εx+
ε
√

2√
πm

(1 − e−mx cos(my)) = 0 (20)

2xy + εy +
ε
√

2√
πm

e−mx sin(my) = 0. (21)

Numerical solution of these equations shows that with
fixed memory length m the real part, x, of the solution
λ is negative when the value of ε is sufficiently small. Un-
der these conditions the fixed point is stable in the sense
that the system will return to the fixed point after pertur-
bation. As ε increases past a critical value instability ap-
pears when the real part, x, becomes positive. In this case
oscillations about the fixed point grow in amplitude. Nu-
merical solution of the full non-linear differential equation
reveals that the amplitude of these oscillations is bounded
giving rise eventually to oscillations of fixed amplitude:
a “limit cycle”. The transition from stable fixed point to
limit cycle is known as a “Hopf Bifurcation”. To calcu-
late the critical value of the update rate εc at which the
bifurcation occurs we set x = 0 in equation (21) giving

sin(my)
my

= −
√
π√

2m
. (22)

The number of solutions to this equation increases with
increasing memory length m, with higher magnitude solu-
tions corresponding to higher frequency oscillations. Sim-
ulations of the system for large m reveal that these higher
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Fig. 4. Dependence of the steady state amplitude of φ(t) on
ε for m = 101 (black circles), m = 201 (open circles) and
m = 401 (triangles). L = 104 in all cases. Theoretical critical
values εc(m), given by equation (24), are shown as vertical
lines for the three cases: m = 101 (thin dashed), m = 201
(thick dashed) and m = 401 (thick solid).

frequency components are transient, so that only the low-
est frequency oscillation persists at large times. Choosing
the root near y = π/m, corresponding to the lowest fre-
quency oscillation, we replace the left hand side of (22)
with its series to second order about this root, and solve
for y

y ∼ π

m
+

√
π3

2m3
+

π2

2m2
as m→ ∞. (23)

Substitution of this expression into (20), and again setting
x = 0, yields

εc ∼ π5/2

2
√

2m3/2
+

π3

2m2
+
π7/2(12 + π2)

16
√

2m5/2
as m→ ∞. (24)

We may view either the update rate ε or the memory
length m as the bifurcation parameter by varying one
while the other is fixed. The critical memory length mc

may be obtained by inverting expression (24), for which
we see that to leading order mc ∝ ε−2/3. For an infinitely
large system, equation (24) is a true asymptotic equality
as m → ∞, because our stability analysis involved a per-
turbation about the stable state, and the approximations
which lead to the linearised delay equation (18) all become
exact in the limit m→ ∞ in the absence of oscillations.

4.3 Numerical tests of stability

Our analytical result may be verified by considering the
amplitude, A, of the simulated population average Hawk
probability once early transient behaviour has dissipated.
Below εc we expect A to be zero because the fixed point
is stable and φ(t) does not oscillate, but to rise once the
critical point is passed. We verify that this is the case for
a series of memory values, as shown in Figure 4. It is clear
that our analytical prediction of εc accurately captures the
onset of oscillations.
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5 Conclusion

We have explored the Hawk-Dove game played by L agents
who have a simple memory for past interactions. They
use this memory as a statistical sample, constantly updat-
ing their probabilistic strategy by weighting it toward the
behaviour which currently appears optimal. When their
memory length (sample size) is sufficiently small, the sys-
tem possesses a stable fixed point, but excessive memory,
or update rate, destabilises the fixed point, creating a limit
cycle via a Hopf bifurcation. Either memory length or up-
date rate may be viewed as the Bifurcation parameter, and
we have analytically characterized the bifurcation point.

In a mixed population of short and long memory
agents, when the system has a stable fixed point, agents
with longer memories are better at selecting an optimal
strategy because they are able to be more accurate in de-
termining the average Hawk probability in the population.
Although a long memory endows agents with better judge-
ments in the stable game, it is no longer an advantage
when strategies oscillate. Such oscillations can be created
by excessively rapid strategy update rate, ε, or by an ex-
cess of agents with long memories. It is therefore possi-
ble for a “weaker” agent to prosper due to an excess of
“stronger” competitors.
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