Skip to main content
Log in

Electronic and optical properties of β′-Tb2(MoO4)3: DFT+U approach

The European Physical Journal B Aims and scope Submit manuscript

Abstract

The ground state properties of β′-Tb2(MoO4)3 are investigated using the density functional theory plus U-Hubbard Hamiltonian. To ascertain the influence of the spin-polarization on the ground state properties of orthorhombic β′-Tb2(MoO4)3, we have performed spin-polarization calculations and the spin-polarized electronic band structure for spin-up (↑) and spin-down (↓) are calculated. It has been found that for spin-up (↑) and spin-down (↓) the β′-Tb2(MoO4)3 compound possesses indirect energy band gap, as the valence band maximum (VBM) is located at Y point of the Brillouin zone (BZ) and the conduction band minimum (CBM) at the center of the BZ. The calculated value of the band gap is 3.61 eV for spin-up (↑) and spin-down (↓), and it is in close agreement with the measured one (3.76 eV). It is clear that the electronic band structure for spin-up (↑) and spin-down (↓) cases presents identical configuration. Therefore, we can conclude that the spin-polarization has identical influence on the ground state properties of β′-Tb2(MoO4)3. To ascertain this observation, we have presented and explained the necessary ingredients of the calculated total and atom-resolved density of states. It has been noticed that the calculated total density of states (TDOS) for spin-up (↑) and spin-down (↓) cases are identical confirming that the spin-polarization has identical influence on the ground state properties of β′-Tb2(MoO4)3. For more details, in order to have deep insight into the electronic structure, we have presented the atom-resolved density of states which show identical features for spin-up (↑) and spin-down (↓). The angular momentum projected density of states (PDOS) helps to identify the angular momentum character of the various structures. To obtain more details about the electronic structure and, hence, the ground state properties, the complex first-order linear optical dispersion is calculated for spin-up (↑) and spin-down (↓) cases to ascertain the influence of the spin-polarization on the ground state properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. H.J. Borchardt, P.E.J. Bierstedt, Appl. Phys. 38, 2057 (1967)

    Article  Google Scholar 

  2. A.K. Tripathi, H.B.J. Lal, Phys. Soc. Jpn 49, 1896 (1980)

    Article  ADS  Google Scholar 

  3. V.A. Efremov, Russ. Chem. Rev. 59, 627 (1990)

    Article  ADS  Google Scholar 

  4. V. Dmitriev, V. Sinitsyn, R. Dilanian, D. Machon, A. Kuznetsov, E. Ponyatovsky, G. Lucazeau, H.P.J. Weber, Phys. Chem. Solids 64, 307 (2003)

    Article  ADS  Google Scholar 

  5. B.G. Bazarov, R.F. Klevtsova, O.D. Chimitova, I.A. Glinskaya, K.N. Fedorov, Y.L. Tushinova, Z.G. Bazarova, Russ. J. Inorg. Chem. 51, 800 (2006)

    Article  Google Scholar 

  6. Z.G. Xia, D.M.J. Chen, Am. Ceram. Soc. 93, 1397 (2010)

    Article  Google Scholar 

  7. M. Mączka, A. Majchrowski, I.V. Kityk, Vib. Spectrosc. 64, 158 (2013)

    Article  Google Scholar 

  8. O.D. Chimitova, V.V. Atuchin, B.G. Bazarov, M.S. Molokeev, Z.G. Bazarova, Proc. SPIE 8771, 87711A (2013)

    Article  ADS  Google Scholar 

  9. J. Hanuza, L. Macalik, K.J. Hermanowicz, Mol. Struct. 319, 17 (1994)

    Article  ADS  Google Scholar 

  10. L.J. Macalik, Alloys Compd. 341, 226 (2002)

    Article  Google Scholar 

  11. A. Kato, S. Oishi, T. Shishido, M. Yamazaki, S.J. Iida, Phys. Chem. Solids 66, 2079 (2005)

    Article  ADS  Google Scholar 

  12. O.D. Chimitova, B.G. Bazarov, R.F. Klevtsova, A.G. Anshits, K.N. Fedorov, A.V. Dubentsov, T.A. Vereshchagina, Y.L. Tushinova, L.A. Glinskaya, Z.G. Bazarova, L.I. Gongorova, J. Struct. Chem. 51, 173 (2010)

    Article  Google Scholar 

  13. J.F. Tang, Y.J. Chen, Y.F. Lin, X.H. Gong, J.H. Huang, Z.D. Luo, Y.D.J. Huang, Opt. Soc. Am. B 27, 1769 (2010)

    Article  ADS  Google Scholar 

  14. V.V. Atuchin, V.G. Grossman, S.V. Adichtchev, N.V. Surovtsev, T.A. Gavrilova, B.G. Bazarov, Opt. Mater. 34, 812 (2012)

    Article  ADS  Google Scholar 

  15. C.S. Lim, Asian J. Chem. 24, 5662 (2012)

    Google Scholar 

  16. V.V. Atuchin, O.D. Chimitova, S.V. Adichtchev, B.G. Bazarov, T.A. Gavrilova, M.S. Molokeev, N.V. Surovtsev, Zh.G. Bazarova, Mater. Lett. 106, 26 (2013)

    Article  Google Scholar 

  17. S. Mielcarek, Z. Tylczyński, Z. Trybuła, S. Łoś, B. Mroz, Cryst. Res. Technol. 40, 1146 (2005)

    Article  Google Scholar 

  18. Guipeng Cai, Jiyang Wang, Huaijin Zhang, Cryst. Res. Technol. 44, 1001 (2009)

    Article  Google Scholar 

  19. K. Nassau, H.J. Levinstein, G.M. Loiacono, J. Phys. Chem. Solids 26, 1805 (1965)

    Article  ADS  Google Scholar 

  20. Song Peng, Wei Cai, Xiaofei Wang, Yi Kan, Fengzhen Huang, Min Xu, Huaijin Zhang, Jiyang Wang, Xiaomei Lu, Jinsong Zhu, Ferroelectrics 410, 69 (2010)

    Article  Google Scholar 

  21. H.J. Borchardt, P.E. Bierstedt, J. Appl. Phys. 18, 2057 (1967)

    Article  ADS  Google Scholar 

  22. E.T. Keve, S.C. Abrahams, K. Nassau, A.M. Glass, Solid State Commun. 8, 1517 (1970)

    Article  ADS  Google Scholar 

  23. E.T. Keve, S.C. Abrahams, J.L. Berstein, J. Chem. Phys. 54, 3185 (1971)

    Article  ADS  Google Scholar 

  24. S.C. Abrahams, C. Svensson, J.L. Bernstein, J. Chem. Phys. 72, 4278 (1980)

    Article  ADS  Google Scholar 

  25. C. Svensson, S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 71, 5191 (1979)

    Article  ADS  Google Scholar 

  26. V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, A.S. Krylov, M.S. Molokeev, B.G. Bazarov, J.G. Bazarova, Zhiguo Xia, Opt. Mater. 36, 1631 (2014)

    Article  ADS  Google Scholar 

  27. E.T. Keve, S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 54, 3185 (1971)

    Article  ADS  Google Scholar 

  28. F.G. Ulman, B.J. Holden, B.N. Gauguly, J.R. Hardy, Phys. Rev. B 8, 2991 (1973)

    Article  ADS  Google Scholar 

  29. S.S. Saleem, G. Arulhas, H.D. Bist, J. Solid State Chem. 48, 77 (1983)

    Article  ADS  Google Scholar 

  30. L. Guy, M. Denis, J. Raman Spectrosc. 37, 189 (2006)

    Article  ADS  Google Scholar 

  31. H. Ida, K. Shinozaki, T. Honma, K. Oh-ishi, T. Komatsu, J. Solid State Chem. 196, 384 (2012)

    Article  ADS  Google Scholar 

  32. M. Imaoka, J. Ceram. Soc. Jpn 69, 282 (1961)

    Google Scholar 

  33. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties (Vienna University of Technology, Austria, 2001)

  34. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  35. V.I. Anisimov, I.V. Solvyev, M.A. Korotin, M.T. Czyzyk, C.A. Sawatzky, Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  36. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    Article  ADS  Google Scholar 

  37. O.K. Andersen, Phys. Rev. B 12, 3060 (1975)

    Article  ADS  Google Scholar 

  38. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  39. B.K. Ponomarev, B.S. Red’kin, A.G.M. Jansen, P. Wyder, H. Wiegelmann, E. Steep, Phys. Solid State 50, 1495 (2008)

    Article  ADS  Google Scholar 

  40. M. Xu, Y.G. Yu, H.J. Zhang, J.Y. Wang, J. Rare Earths 27, 192 (2009)

    Article  Google Scholar 

  41. G.P. Cai, J.Y. Wang, H.J. Zhang, Cryst. Res. Technol. 44, 1001 (2009)

    Article  Google Scholar 

  42. Y. Saeed, S. Nazir, A. Shaukat, A.H. Reshak, J. Magn. Magn. Mater. 322, 3214 (2010)

    Article  ADS  Google Scholar 

  43. M.B. Kanoun, A.H. Reshak, N.K.-Bouayed, S.G.-Said, J. Magn. Magn. Mater. 324, 1397 (2012)

    Article  ADS  Google Scholar 

  44. H.S. Saini, M. Singh, A.H. Reshak, M.K. Kashyap, J. Magn. Magn. Mater. 331, 1 (2013)

    Article  ADS  Google Scholar 

  45. A.H. Reshak, H. Kamarudin, Z.A. Alahmed, S. Auluck, J. Chyský, J. Magn. Magn. Mater. 361, 206 (2014)

    Article  ADS  Google Scholar 

  46. A.H. Reshak, Z.A. Alahmed, J. Bila, V.V. Atuchin, B.G. Bazarov, O.D. Chimitova, M.S. Molokeev, I.P. Prosvirin, A.P. Yelisseyev, J. Phys. Chem. C 120, 10559 (2016)

    Article  Google Scholar 

  47. A.H. Reshak, RSC Advances 6, 54001 (2016)

    Article  Google Scholar 

  48. F. Wooten, Optical Properties of solids (Academic Press, New York, London, 1972)

  49. D.R. Penn, Phys. Rev. B 128, 2093 (1962)

    Article  ADS  Google Scholar 

  50. G.D. Boyd, H. Kasper, J.H. McFee, IEEE J. Quantum Electron. 7, 563 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Reshak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshak, A.H. Electronic and optical properties of β′-Tb2(MoO4)3: DFT+U approach. Eur. Phys. J. B 89, 256 (2016). https://doi.org/10.1140/epjb/e2016-70430-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70430-x

Keywords

Navigation