Skip to main content
Log in

Power-law regularities in human language

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Complex structure of human language enables us to exchange very complicated information. This communication system obeys some common nonlinear statistical regularities. We investigate four important long-range features of human language. We perform our calculations for adopted works of seven famous litterateurs. Zipf’s law and Heaps’ law, which imply well-known power-law behaviors, are established in human language, showing a qualitative inverse relation with each other. Furthermore, the informational content associated with the words ordering, is measured by using an entropic metric. We also calculate fractal dimension of words in the text by using box counting method. The fractal dimension of each word, that is a positive value less than or equal to one, exhibits its spatial distribution in the text. Generally, we can claim that the Human language follows the mentioned power-law regularities. Power-law relations imply the existence of long-range correlations between the word types, to convey an especial idea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Smith, E. Szäthmáry, The Major Transitions in Evolution (Oxford University Press, Oxford, 1997)

  2. M.A. Montemurro, D.H. Zanette, arXiv:1503.01129v1 (2015)

  3. L. Lü, Z.K. Zhang, T. Zhou, Sci. Rep. 3, 1082 (2013)

    Google Scholar 

  4. G. Zipf, Human Behavior and the Principle of Least Effort: An introduction to Human Ecology (Addison-Wesley Press, Cambridge, 1949)

  5. H.S. Heaps, Information Retrieval: Computational and Theoretical Aspects (Academic Press, New York, 1978)

  6. T. Cover, J. Thomas, Elements of Information Theory (John Wiley & Sons, New York, 1991)

  7. J. Sienkiewicz, M. Skowron, G. Paltoglou, J.A. Holyst, Advs. Complex Syst. 16, 1350026 (2013)

    Article  MathSciNet  Google Scholar 

  8. M.F. Barnsley, Fractals Everywhere, 2nd edn. (Morgan Kaufmann, San Francisco, 1993)

  9. E. Najafi, A.H. Darooneh, PLoS One 10, e0130617 (2015)

    Article  Google Scholar 

  10. E.G. Altmann, M. Gerlach, arXiv:1502.03296v1 (2015)

  11. S.T. Piantadosi, Psychon. Bull. Rev. 21, 1112 (2014)

    Article  Google Scholar 

  12. D.H. Zanette, arXiv:1412.3336v1 (2014)

  13. I. Moreno-Sánchez, F. Font-Clos, A. Corral, PLoS One 11, e0147073 (2016)

    Article  Google Scholar 

  14. J. Baixeries, B. Elvevåg, R. Ferrer-i-Cancho, PLoS One 8(3), e53227 (2013)

    Article  ADS  Google Scholar 

  15. X. Yan, P. Minnhagen, Physica A 444, 828 (2016)

    Article  ADS  Google Scholar 

  16. F. Font-Clos, A. Corral, Phys. Rev. Lett. 114, 238701 (2015)

    Article  ADS  Google Scholar 

  17. J.R. Williams, P.R. Lessard, S. Desu, E.M. Clark, J.P. Bagrow, C.M. Danforth, P.S. Dodds, Sci. Rep. 5, 12209 (2015)

    Article  ADS  Google Scholar 

  18. À. Corral, G. Boleda, R. Ferrer-i-Cancho, PLoS One 10, e0129031 (2015)

    Article  Google Scholar 

  19. A. Gelbukh, G. Sidorov, Lect. Notes Comput. Sci. 2004, 332 (2001)

    Article  Google Scholar 

  20. W. Deng, A.E. Allahverdyan, B. Li, Q.A. Wang, Eur. Phys. J. B 87, 47 (2014)

    Article  ADS  Google Scholar 

  21. A.M. Petersen, J.N. Tenenbaum, S. Havlin, H.E. Stanley, M. Perc, Sci. Rep. 2, 943 (2012)

    ADS  Google Scholar 

  22. R. Ferrer i Cancho, R.V. Solé, J. Quant. Linguist. 8, 165 (2001)

    Article  Google Scholar 

  23. J.R. Williams, J.P. Bagrow, C.M. Danforth, P.S. Dodds, Phys. Rev. E 91, 052811 (2015)

    Article  ADS  Google Scholar 

  24. S. Bernhardsson, L.E. Correa da Rocha, P. Minnhagen, New J. Phys. 11, 123015 (2009)

    Article  ADS  Google Scholar 

  25. Z.K. Zhang, L. Lü, J.G. Liu, T. Zhou, Eur. Phys. J. B 66, 557 (2008)

    Article  ADS  Google Scholar 

  26. V.V. Bochkarev, E.Y. Lerner, A.V. Shevlyakova, J. Phys.: Conf. Ser. 490, 012009 (2014)

    ADS  Google Scholar 

  27. M. Gerlach, E.G. Altmann, Phys. Rev. X 3, 021006 (2013)

    Google Scholar 

  28. L. Lü, Z.K. Zhang, T. Zhou, PLoS One 5, e14139 (2010)

    Article  ADS  Google Scholar 

  29. M.A. Montemurro, D.H. Zanette, Adv. Complex Syst. 13, 135 (2010)

    Article  Google Scholar 

  30. A. Mehri, A.H. Darooneh, Physica A 390, 3157 (2011)

    Article  ADS  Google Scholar 

  31. A. Mehri, A.H. Darooneh, Phys. Rev. E 83, 056106 (2011)

    Article  ADS  Google Scholar 

  32. A. Mehri, M. Jamaati, H. Mehri, Phys. Lett. A 379, 1627 (2015)

    Article  ADS  Google Scholar 

  33. K. Falconer, Fractal Geometry, 2nd edn. (John Wiley & Sons, Chichester, 2003)

  34. M. Ausloos, Phys. Rev. E 86, 031108 (2012)

    Article  ADS  Google Scholar 

  35. S. Drożdż et al., Information Sci. 331, 32 (2016)

    Article  Google Scholar 

  36. A.E. Allahverdyan, W. Deng, Q.A. Wang, Phys. Rev. E 88, 062804 (2013)

    Article  ADS  Google Scholar 

  37. A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mehri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehri, A., Lashkari, S. Power-law regularities in human language. Eur. Phys. J. B 89, 241 (2016). https://doi.org/10.1140/epjb/e2016-70423-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70423-9

Keywords

Navigation