Skip to main content

Advertisement

Log in

A first-principle study on the phase transition, electronic structure, and mechanical properties of three-phase ZrTi2 alloy under high pressure*

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We employed density-functional theory (DFT) within the generalized gradient approximation (GGA) to investigate the ZrTi2 alloy, and obtained its structural phase transition, mechanical behavior, Gibbs free energy as a function of pressure, P-V equation of state, electronic and Mulliken population analysis results. The lattice parameters and P-V EOS for α, β and ω phases revealed by our calculations are consistent with other experimental and computational values. The elastic constants obtained suggest that ω-ZrTi2 and α-ZrTi2 are mechanically stable, and that β-ZrTi2 is mechanically unstable at 0 GPa, but becomes more stable with increasing pressure. Our calculated results indicate a phase transition sequence of αωβ for ZrTi2. Both the bulk modulus B and shear modulus G increase linearly with increasing pressure for three phases. The G/B values illustrated good ductility of ZrTi2 alloy for three phases, with ω<α<β at 0 GPa. The Mulliken population analysis showed that the increment of d electron occupancy stabilized the β phase. A low value for B '0 is the feature of EOS for ZrTi2 and this softness in the EOS is representative of pressure induced s-d electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hansen, K. Anderko, in Constitution of Binary Alloys (McGraw-Hill, New York, 1958; Metallurgizdat, Moscow, 1962), Vol. 2

  2. J.C. Duthie, D.G. Pettifor, Phys. Rev. Lett. 38, 564 (1977)

    Article  ADS  Google Scholar 

  3. S.K. Sikka, Y.K. Vohra, R. Chidambaram, Prog. Mater. Sci. 27, 245 (1982)

    Article  Google Scholar 

  4. H.L. Skriver, Phys. Rev. B 31, 1909 (1985)

    Article  ADS  Google Scholar 

  5. M. Sigalas, D.A. Papaconstantopoulos, N.C. Bacalis, Phys. Rev. B 45, 5777 (1992)

    Article  ADS  Google Scholar 

  6. I.O. Bashkin, A.Yu. Pagnuev, A.F. Gurov, V.K. Fedotov, G.E. Abrosimova, E.G. Ponyatovskii, Phys. Solid State 42, 170 (2000)

    Article  ADS  Google Scholar 

  7. I.O. Bashkin, V.G. Tissen, M.V. Nefedova, A. Schiwek, W.B. Holzapfel, E.G. Ponyatovsky, J. Exp. Theor. Phys. Lett. 73, 75 (2001)

    Article  Google Scholar 

  8. I.O. Bashkin, V.K. Fedotov, M.V. Nefedova, V.G. Tissen, E.G. Ponyatovsky, A. Schiwek, W.B. Holzapfel, Phys. Rev. B 68, 054401 (2003)

    Article  ADS  Google Scholar 

  9. V.P. Dmitriev, L. Dubrovinsky, T. Le Bihan, A. Kuznetsov, H.P. Weber, E.G. Poniatovksy, Phys. Rev. B 73, 094114 (2006)

    Article  ADS  Google Scholar 

  10. V.Yu. Trubitsin, E.B. Dolgusheva, J. Phys.: Condens. Matter 22, 46540 (2010)

    Google Scholar 

  11. V.Yu. Trubitsin, E.B. Dolgusheva, Phys. Solid State 53, 223 (2011)

    Article  ADS  Google Scholar 

  12. B.T. Wang, W.D. Li, P. Zhang, J. Nucl. Mater. 420, 501 (2012)

    Article  ADS  Google Scholar 

  13. X.L. Yuan, M.A. Xue, W. Chen, T.Q. An, Front. Phys. 9, 219 (2014)

    Article  Google Scholar 

  14. P. Zhang, F.C. Meng, Z.Z. Gong, G.F. Ji, S.X. Cui, D.Q. Wei, Comput. Mat. Sci. 74, 129 (2013)

    Article  Google Scholar 

  15. R.M. Dreizler, E.K.U. Gross, Density functional theory: an approach to the quantum many-body problem (Springer, Berlin, 1990)

  16. M.H. Yoo, C.L. Fu, ISIJ Int. 31, 1049 (1991)

    Article  Google Scholar 

  17. A.E. Carlsson, P.J. Meschter, in Intermetallic Compounds, edited by J.H. Westbrook, R.L. Fleischer (John Wiley and Sons Ltd., New York, 1994), Vol. 1

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  19. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002)

    ADS  Google Scholar 

  21. M. Dechamps, P. Lehr, A. Dubertret, M. Fayard, Mater. Res. Bull. 7, 1369 (1972)

    Article  Google Scholar 

  22. A. Dubertret, M. Fayard, J. Phys. 38, C7 (1977)

    Google Scholar 

  23. V.V. Aksenenkov et al., Fiz. Met. Metalloved. 69, 154 (1990)

    Google Scholar 

  24. F. Brich, Phys. Rev. 71, 809 (1947)

    Article  ADS  Google Scholar 

  25. S.K. Dolukhanyan, A.G. Aleksanyan, O.P. Ter-Galstyan, V.S. Shekhtman, M.K. Sakharov, G.E. Abrosimova, Russ. J. Phys. Chem. B 1, 563 (2007)

    Article  Google Scholar 

  26. V.S. Shekhtman, S.K. Dolukhanyan, A.G. Aleksanyan, D.G. Mayilyan, O.P. Ter-Galstyan, M.K. Sakharov, S.S. Khasanov, Int. J. Self-Propag. High-Temp Synth. 19, 34 (2010)

    Article  Google Scholar 

  27. H. Xia, S.J. Duclos, A.L. Ruoff, Y.K. Vohra, Phys. Rev. Lett. 64, 204 (1990)

    Article  ADS  Google Scholar 

  28. Y. Akahama, M. Kobayashi, H. Kawamura, J. Phys. Soc. Jpn 60, 3211 (1991)

    Article  ADS  Google Scholar 

  29. B.T. Wang, P. Zhang, H.Y. Liu, W.D. Li, J. Appl. Phys. 109, 063514 (2011)

    Article  ADS  Google Scholar 

  30. H.Z. Guo, X.R. Chen, L.C. Cai, J. Zhu, J. Gao, Solid State Commun. 134, 787 (2005)

    Article  ADS  Google Scholar 

  31. L. Fast, J.M. Wills, B. Johansson, O. Eriksson, Phys. Rev. B 51, 17431 (1995)

    Article  ADS  Google Scholar 

  32. M. Born, Proc. Cambridge Philos. Soc. 36, 160 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  33. X.L. Yuan, D.Q. Wei, Y. Cheng, G.F. Ji, Q.M. Zhang, Z.Z. Gong, Comput. Mater. Sci. 58, 125 (2012)

    Article  Google Scholar 

  34. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  35. X.L. Yuan, D.Q. Wei, X.R. Chen, Q.M. Zhang, Z.Z. Gong, J. Alloys Compd. 509, 769 (2011)

    Article  Google Scholar 

  36. H.L. Skriver, Phys. Rev. B 31, 1909 (1985)

    Article  ADS  Google Scholar 

  37. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    Article  ADS  Google Scholar 

  38. Y.K. Vohra, S.K. Sikka, W.B. Holzapfel, J. Phys. F 13, L107 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Li Yuan or Mi-An Xue.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-70218-0

Electronic supplementary material

Supplementary Material

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, XL., Xue, MA., Chen, W. et al. A first-principle study on the phase transition, electronic structure, and mechanical properties of three-phase ZrTi2 alloy under high pressure*. Eur. Phys. J. B 89, 246 (2016). https://doi.org/10.1140/epjb/e2016-70218-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70218-0

Keywords

Navigation