Skip to main content
Log in

Indirect exchange interaction in Rashba-spin-orbit-coupled graphene nanoflakes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the indirect exchange interaction, named Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, between localized magnetic impurities in graphene nanoflakes with zig-zag edges in the presence of the Rashba spin-orbit interaction (RSOI). We calculate the isotropic and anisotropic RKKY amplitudes by utilizing the tight-binding (TB) model. The RSOI, as a gate tunable variable, is responsible for changes of the RKKY amplitude. We conclude that there is not any switching of the magnetic order (from ferro- to antiferro-magnetic and vice versa) in such a system through the RSOI. The dependence of the RKKY amplitude on the positions of the magnetic impurities and the size of the system is studied. The symmetry breaking, which can occur due to the Rashba interaction, leads to spatial anisotropy in the RKKY amplitude and manifests as collinear and noncollinear terms. Our results show the possibility of control and manipulation of spin correlations in carbon spin-based nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. L. Fritz, M. Vojta, Rep. Prog. Phys. 76, 032501 (2013)

    Article  ADS  Google Scholar 

  3. J.E. Bunder, H.-H. Lin, Phys. Rev. B 80, 153414 (2009)

    Article  ADS  Google Scholar 

  4. A.M. Black-Schaffer, Phys. Rev. B 81, 205416 (2010)

    Article  ADS  Google Scholar 

  5. H. Imamura, P. Bruno, Y. Utsumi, Phys. Rev. B 69, 121303 (2003)

    Article  ADS  Google Scholar 

  6. G. Bergmann, W. Shieh, M. Huberman, Phys. Rev. B 46, 8607 (1992)

    Article  ADS  Google Scholar 

  7. K. Szalowski, Physica E 52, 46 (2013)

    Article  ADS  Google Scholar 

  8. K. Szalowski, Phys. Rev. B 84, 205409 (2011)

    Article  ADS  Google Scholar 

  9. K. Szalowski, J. Phys.: Condens. Matter 25, 16600 (2013)

    Google Scholar 

  10. A.T. Costa Jr., D.F. Kirwan, M.S. Ferreira, Phys. Rev. B 72, 085402 (2005)

    Article  ADS  Google Scholar 

  11. S. Saremi, Phys. Rev. B 76, 184430 (2007)

    Article  ADS  Google Scholar 

  12. T. Koga, J. Nitta, H. Takayanagi, S. Datta, Phys. Rev. Lett. 88, 126601 (2002)

    Article  ADS  Google Scholar 

  13. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  14. G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989)

    Article  ADS  Google Scholar 

  15. Y.M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, H. Ohno, Appl. Phys. Lett. 90, 212507 (2007)

    Article  ADS  Google Scholar 

  16. S. Trickey, Lecture Notes on Electronic States and Excitations on Nanostructures (PASI School, Zacatecas, Mexico, 2007)

  17. J.C. Boettger, S.B. Trickey, Phys. Rev. B 75, 121402 (2007)

    Article  ADS  Google Scholar 

  18. A. Dyrdal, J. Barnas, V.K. Dugaev Phys. Rev. B 89, 075422 (2014)

    Article  ADS  Google Scholar 

  19. J. Sinova, D. Culcer, Q. Niu, N.A. Synitsyn, T. Jungwirth, A.H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  Google Scholar 

  20. S. Smirnov, Phys. Rev. B 79, 134403 (2009)

    Article  ADS  Google Scholar 

  21. A.F. Dossa, G.Y.H. Avossevou, Phys. Scr. 89, 125803 (2014)

    Article  ADS  Google Scholar 

  22. H. Nikoofard, E. Heidari Semiromi, Europhys. Lett. 110, 47008 (2015)

    Article  ADS  Google Scholar 

  23. L.L. Sohn, Nature 394, 131 (1998)

    Article  ADS  Google Scholar 

  24. T. Ando, Y. Arakawa, K. Furuya, S. Komiyama, H. Nakashima, Mesoscopic Physics and Electronics (Springer, Berlin, 1998)

  25. P. Lyu, N.-N. Liu, C. Zhang, J. Appl. Phys. 102, 103910 (2007)

    Article  ADS  Google Scholar 

  26. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  27. M. Ezawa, Phys. Rev. B 76, 245415 (2007)

    Article  ADS  Google Scholar 

  28. M. Ezawa, Physica E 40, 1421 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Modarresi, B.S. Kandemir, M.R. Roknabadi, N. Shahtahmasebi, J. Magn. Magn. Mater. 367, 81 (2014)

    Article  ADS  Google Scholar 

  30. M. Zarea, N. Sandler, Phys. Rev. B 79, 165442 (2009)

    Article  ADS  Google Scholar 

  31. M.J. Schmidt, D. Loss, Phys. Rev. B 81, 165439 (2010)

    Article  ADS  Google Scholar 

  32. M. Sherafati, S. Satpathy, Phys. Rev. B 83, 165425 (2011)

    Article  ADS  Google Scholar 

  33. A.T. Costa Jr., R.B. Muniz, D.L. Mills, Phys. Rev. Lett. 94, 137203 (2005)

    Article  ADS  Google Scholar 

  34. U. Falk, A. Furrer, J.K. Kjems, H.U. Gudel, Phys. Rev. Lett. 52, 1336 (1984)

    Article  ADS  Google Scholar 

  35. E.A. Harris, J. Owen, Phys. Rev. Lett. 11, 9 (1963)

    Article  ADS  Google Scholar 

  36. D.S. Rodbell, I.S. Jacobs, J. Owen, E.A. Harris, Phys. Rev. Lett. 11, 10 (1963)

    Article  ADS  Google Scholar 

  37. S. Blundell, Magnetism in Condensed Matter, in Oxford master series in condensed matter physics (Oxford University Press, Oxford, 2001), Chap. 4, p. 76

  38. J. Liu, K.S. Chan, J. Wang, Nanotechnology 23, 095201 (2012)

    Article  ADS  Google Scholar 

  39. C. Kittel, in Solid State Physics, edited by F. Seitz, D. Turnbull, H. Ehrenreich (Academic Press, New York, 1968), Vol. 22, p. 1

  40. F.M. Hu, L. Kou, T. Frauenheim, Sci. Rep. 5, 8943 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nikoofard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikoofard, H., Semiromi, E. Indirect exchange interaction in Rashba-spin-orbit-coupled graphene nanoflakes. Eur. Phys. J. B 89, 221 (2016). https://doi.org/10.1140/epjb/e2016-70094-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70094-6

Keywords

Navigation