Skip to main content
Log in

Slave fermion formalism for the tetrahedral spin chain

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We use the SU(2) slave fermion approach to study a tetrahedral spin 1/2 chain, which is a one-dimensional generalization of the two dimensional Kitaev honeycomb model. Using the mean field theory, coupled with a gauge fixing procedure to implement the single occupancy constraint, we obtain the phase diagram of the model. We then show that it matches the exact results obtained earlier using the Majorana fermion representation. We also compute the spin-spin correlation in the gapless phase and show that it is a spin liquid. Finally, we map the one-dimensional model in terms of the slave fermions to the model of 1D p-wave superconducting model with complex parameters and show that the parameters of our model fall in the topological trivial regime and hence does not have edge Majorana modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Mila, Eur. J. Phys. 21, 499 (2000)

    Article  Google Scholar 

  2. L. Balents, Nature 464, 199 (2010)

    Article  ADS  Google Scholar 

  3. F. Misguich, arXiv:cond-mat/0809.2257 (2008)

  4. P.A. Lee, J Phys.: Conf. Ser. 529, 012001 (2014)

    ADS  Google Scholar 

  5. J.B. Kogut, Rev. Mod. Phys. 51, 659 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  6. X.G. Wen, Quantum Field theory of Many Body Systems (Oxford University Press, 2007)

  7. X.G. Wen, F. Wilczek, A. Zee, Phys. Rev. B 39, 11413 (1989)

    Article  ADS  Google Scholar 

  8. G. Baskaran, Z. Zou, P.W. Anderson, Solid State Commun. 63, 973 (1987)

    Article  ADS  Google Scholar 

  9. I. Affleck, J.B. Marston, Phys. Rev. B 37, 3774 (1998)

    Article  ADS  Google Scholar 

  10. E. Dagotto, E. Fradkin, A. Moreo, Phys. Rev. B 38, 2926 (1988)

    Article  ADS  Google Scholar 

  11. D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)

    Article  ADS  Google Scholar 

  12. N. Read, S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

    Article  ADS  Google Scholar 

  13. N. Read, S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

    Article  ADS  Google Scholar 

  14. S.A. Kivelson, D.S. Rokhsar, J.P. Sethna, Phys. Rev. B 35, 8865 (1987)

    Article  ADS  Google Scholar 

  15. R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001)

    Article  ADS  Google Scholar 

  16. G.J. Chen et al., Phys. Rev. B 42, 2662 (1990)

    Article  ADS  Google Scholar 

  17. G. Misguich et al., Phys. Rev. B 60, 1064 (1999)

    Article  ADS  Google Scholar 

  18. F. Becca et al., Phys. Rev. B 62, 15277 (2000)

    Article  ADS  Google Scholar 

  19. T. Kashima, M. Imada, J. Phys. Soc. Jpn 70, 3398 (2001)

    Article  ADS  Google Scholar 

  20. A. Kitaev, Ann. Phys. 303, 2 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Kitaev, Ann. Phys. 321, 2 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S.D. Sarma, Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  Google Scholar 

  23. J.K. Pachos, Introduction to topological quantum computation (Cambridge University Press, 2012)

  24. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  25. F.J. Burnell, C. Nayak, Phys. Rev. B 84, 125125 (2011)

    Article  ADS  Google Scholar 

  26. S. Mandal, R. Shankar, G. Baskaran, J. Phys. A 45, 335304 (2012)

    Article  MathSciNet  Google Scholar 

  27. H. Yao, S. Kivelson, Phys. Rev. Lett. 99, 247203 (2007)

    Article  ADS  Google Scholar 

  28. S. Yang, D.L. Zhou, C.P. Sun, Phys. Rev. B 76, 180404 (R) (2007)

    Article  ADS  Google Scholar 

  29. S. Mandal, N. Surendran, Phys. Rev. B 79, 024426 (2009)

    Article  ADS  Google Scholar 

  30. Z. Nussinov, G. Ortiz, Phys. Rev. B 79, 224408 (2009)

    Article  Google Scholar 

  31. G. Baskaran, G. Santhosh, R. Shankar, arXiv:0908.1614 (2009)

  32. A. Saket, S.R. Hassan, R. Shankar, Phys. Rev. B 82, 174409 (2010)

    Article  ADS  Google Scholar 

  33. A. Saket, S.R. Hassan, R. Shankar, Phys. Rev. B 87, 174414 (2013)

    Article  ADS  Google Scholar 

  34. L.M. Duan, E. Demler, M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003)

    Article  ADS  Google Scholar 

  35. J.Q. You, X. Shi, X. Hu, F. Nori, Phys. Rev. B 79, 224408 (2009)

    Article  Google Scholar 

  36. H.J. Mikeska, A.K. Kolezhuk, in Quantum magnetism, Lecture notes in Physics (Springer, 2004), Vol. 645, pp. 1–83

  37. A. Kitaev, Phys. Usp. 44, 131 (2001)

    Article  ADS  Google Scholar 

  38. A. Saket, Ph.D. thesis, Homi Bhabha National Institute, India, 2013

  39. W. DeGottardi, M. Thakurathi, S. Vishveshwara, D. Sen, Phys. Rev. B 88, 165111 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumathi Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, P., Rao, S. Slave fermion formalism for the tetrahedral spin chain. Eur. Phys. J. B 89, 206 (2016). https://doi.org/10.1140/epjb/e2016-70084-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70084-8

Keywords

Navigation