Skip to main content
Log in

Local atomic structures of single-component metallic glasses

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this study we examine the structural properties of single-component metallic glasses of aluminum. We use a molecular dynamics simulation based on semi-empirical many-body potential, derived from the embedded atom method (EAM). The radial distribution function (RDF), common neighbors analysis method (CNA), coordination number analysis (CN) and Voronoi tessellation are used to characterize the metal’s local structure during the heating and cooling (quenching). The simulation results reveal that the melting temperature depends on the heating rate. In addition, atomic visualization shows that the structure of aluminum after fast quenching is in a glassy state, confirmed quantitatively by the splitting of the second peak of the radial distribution function, and by the appearance of icosahedral clusters observed via CNA technique. On the other hand, the Wendt-Abraham parameters are calculated to determine the glass transition temperature (T g ), which depends strongly on the cooling rate; it increases while the cooling rate increases. On the basis of CN analysis and Voronoi tessellation, we demonstrate that the transition from the Al liquid to glassy state is mainly due to the formation of distorted and perfect icosahedral clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, N. Nishiyama, MRS Bull. 32, 651 (2007)

    Article  Google Scholar 

  2. H. Hilzinger, IEEE Trans. Magn. 21, 2020 (1985)

    Article  ADS  Google Scholar 

  3. A. Inoue, J. Seon Gook, Mater. Trans. JIM 36, 1180 (1995)

    Article  Google Scholar 

  4. A. Inoue, B. Shen, H. Koshiba, H. Kato, R. Yavar, Nat. Mater. 2, 661 (2003)

    Article  ADS  Google Scholar 

  5. Q. Luo, W.H. Wang, J. Non-Cryst. Solids 355, 759 (2009)

    Article  ADS  Google Scholar 

  6. C. Wong, S. Aly, A. Nazareth, K. Gudimetta, B. Dale, G. Hadjipanayis, J. Phys. D 19, 1057 (1986)

    Article  ADS  Google Scholar 

  7. S. Cornelison, D. Sellmyer, J. Zhao, Z. Chen, J. Appl. Phys. 53, 2330 (1982)

    Article  ADS  Google Scholar 

  8. E. Axinte, Mater. Des. 35, 518 (2012)

    Article  Google Scholar 

  9. R.Y. Umetsu, R. Tu, T. Goto, Mater. Trans. 53, 1721 (2012)

    Article  Google Scholar 

  10. A. Inoue, K. Kita, T. Zhang, T. Masumoto, Mater. Trans. JIM 30, 722 (1989)

    Article  Google Scholar 

  11. A. Peker, W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993)

    Article  ADS  Google Scholar 

  12. A. Inoue, T. Zhang, T. Masumoto, Mater. Trans. JIM 31, 177 (1990)

    Article  Google Scholar 

  13. T. Zhang, A. Inoue, T. Masumoto, Mater. Trans. JIM 32, 1005 (1991)

    Article  Google Scholar 

  14. C. Massobric, V. Pontikis, G. Martin, Phys. Rev. B 41, 10486 (1990)

    Article  ADS  Google Scholar 

  15. F. Cardellini, V. Contini, G. Mazzone, Scr. Metall. Mater. 4, 641 (1995)

    Article  Google Scholar 

  16. S.J. Pang, T. Zhang, K. Asami, A. Inoue, Acta Mater. 50, 489 (2002)

    Article  Google Scholar 

  17. Tang Mei-Bo, Zhao De-Qian, Pan Ming-Xiang, Wang Wei-Hua, Chin. Phys. Lett. 21, 901 (2004)

    Article  ADS  Google Scholar 

  18. H.A. Davies, J. Aucote, J.B. Hull, Nature 246, 13 (1973)

    ADS  Google Scholar 

  19. L.A. Greer, Science 267, 1947 (1995)

    Article  ADS  Google Scholar 

  20. D.B. Miracle, Acta Mater. 54, 4317 (2006)

    Article  Google Scholar 

  21. M. Trexler, N. Thadhani, Mater. Sci. 55, 759 (2010)

    Google Scholar 

  22. M.F. Ashby, A.L. Greer, Scr. Mater. 54, 321 (2006)

    Article  Google Scholar 

  23. S. Schneider, J. Phys.: Condens. Matter 13, 7723 (2001)

    ADS  Google Scholar 

  24. H. Kou, Y. Li, T. Zhang, J. Li, J.S. Li, Trans. Nonferrous Met. Soc. China 21, 552 (2011)

    Article  Google Scholar 

  25. M. Miller, P. Liaw, Bulk metallic glasses (Springer, New York, 2008)

  26. C. Suryanarayana, A. Inoue, Bulk metallic glasses (CRC Press, New York, 2011)

  27. V.C. Solomon et al., Nature 448, 787 (2007)

    Article  ADS  Google Scholar 

  28. S. Solhjoo, A. Simchi, H. Aashuri, T. Mech. Eng. 36, 13 (2012)

    Google Scholar 

  29. L. Zhong, J. Wang, H. Sheng, Z. Zhang, S.X. Mao, Nature 512, 177 (2014)

    Article  ADS  Google Scholar 

  30. Y.Q. Cheng, E. Ma, Prog. Mater. Sci. 56, 379 (2011)

    Article  MathSciNet  Google Scholar 

  31. W. Wang, Prog. Mater. Sci. 57, 487 (2012)

    Article  Google Scholar 

  32. Y. Shi, M.L. Falk, Phys. Rev. Lett. 95, 095502 (2005)

    Article  ADS  Google Scholar 

  33. D.V. Louzguine-Luzgin, R. Belosludov, M. Saito, Y. Kawazoe, A. Inoue, J. Appl. Phys. 104, 123529 (2008)

    Article  ADS  Google Scholar 

  34. V.V. Hoang, Physica B 405, 1908 (2010)

    Article  ADS  Google Scholar 

  35. V.V. Hoang, T. Odagaki, J. Phys. Chem. B 115, 6946 (2011)

    Article  Google Scholar 

  36. Q. An, S.N. Luo, W.A. Goddard, W.Z. Han, B. Arman, Appl. Phys. Lett. 100, 041909 (2012)

    Article  ADS  Google Scholar 

  37. A. Lindsay Greer, Science 267, 1947 (1995)

    Article  Google Scholar 

  38. J. Liu, J.Z. Zhao, Z.Q. Hu, Mater. Sci. Eng. A 452-453, 103 (2007)

    Article  Google Scholar 

  39. Y. Qi, T. Cagın, Y. Kimura, W.A. Goddard, Phys. Rev. B 59, 3527 (1999)

    Article  ADS  Google Scholar 

  40. Z.D. Sha, Y.W. Zhang, Y.P. Feng, Y. Li, J. Alloys Compd. 509, 8319 (2011)

    Article  Google Scholar 

  41. X.J. Liu et al., Acta Mater. 59, 6480 (2011)

    Article  Google Scholar 

  42. R.S. Liu, D.W. Qi, S. Wang, Phys. Rev. B 45, 451 (1992)

    Article  ADS  Google Scholar 

  43. C.C. Wang, C.H. Wong, J. Alloys Compd. 509, 10222 (2011)

    Article  Google Scholar 

  44. R.S. Liu, Y.C. Liang, H.R. Liu, N.C. Zheng, Y.F. Mo, Z.Y. Hou, L.L. Zhou, P. Peng, Trans. Nonferrous Met. Soc. China 23, 1052 (2013)

    Article  Google Scholar 

  45. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  46. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    Article  ADS  Google Scholar 

  47. R. Zope, Y. Mishin, Phys. Rev. B 68, 024102 (2003)

    Article  ADS  Google Scholar 

  48. P. Vinet, J.H. Rose, J. Ferrante, J.R. Smith, Phys. Rev. B 29, 2963 (1984)

    ADS  Google Scholar 

  49. G.P. Purja Pun, Y. Mishin, Phil. Mag. 89, 3245 (2009)

    Article  ADS  Google Scholar 

  50. Y.Q. Cheng, E. Ma, Prog. Mater. Sci. 56, 379 (2011)

    Article  MathSciNet  Google Scholar 

  51. J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)

    Article  Google Scholar 

  52. A. Pasturel, N. Jakse, Mod. Phys. Lett. B 20, 655 (2006)

    Article  ADS  Google Scholar 

  53. L. Wang, Y. Zhang, H. Yang, Y. Chen, Phys. Lett. A 317, 489 (2003)

    Article  ADS  Google Scholar 

  54. L. Qi, H.F. Zhang, Z.Q. Hu, P.K. Liaw, Phys. Lett. A 327, 506 (2004)

    Article  ADS  Google Scholar 

  55. Y. Hong, Y. Lü, M. Chen, Z. Guo, Sci. China Ser. G 50, 407 (2007)

    Article  Google Scholar 

  56. Z.Y. Hou, L.X. Liu, R.S. Liu, Z.A. Tian, J.G. Wang, J. Non-Cryst. Solids 357, 1430 (2011)

    Article  ADS  Google Scholar 

  57. C.C. Wang, C.H. Wong, J. Alloys Compd. 509, 10222 (2011)

    Article  Google Scholar 

  58. T. Ichika, Phys. Stat. Sol. A 19, 707 (1973)

    Article  ADS  Google Scholar 

  59. H.R. Wendt, F.F. Abraham, Phys. Rev. Lett. 41, 1244 (1978)

    Article  ADS  Google Scholar 

  60. Y.C. Liang, R.S. Liu, Y.F. Mo, H.R. Liu, Z.A. Tian, Q.Y. Zhou, H.T. Zhang, L.L. Zhou, Z.Y. Hou, P. Peng, J. Alloys Compd. 597, 269 (2014)

    Article  ADS  Google Scholar 

  61. J.C. Zhang, C. Chen, Q.X. Pei, Q. Wan, W.X. Zhang, Z.D. Sha, Mater. Des. 77, 1 (2015)

    Article  Google Scholar 

  62. S. Trady, M. Mazroui, A. Hasnaoui, K. Saadouni, J. Non-Cryst. Solids 443, 136 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salma Trady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trady, S., Hasnaoui, A., Mazroui, M. et al. Local atomic structures of single-component metallic glasses. Eur. Phys. J. B 89, 223 (2016). https://doi.org/10.1140/epjb/e2016-60832-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60832-1

Keywords

Navigation