Skip to main content
Log in

Understanding cooperative behavior in structurally disordered populations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effects of an inhomogeneous competing environment on the extent of cooperation are studied within the context of a site-diluted evolutionary snowdrift game on a square lattice, with the occupied sites representing the players, both numerically and analytically. The frequency of cooperation ℱ C generally shows a non-monotonic dependence on the fraction of occupied sites ρ, for different values of the payoff parameter r. Slightly diluting a lattice leads to a lower cooperation for small and high values of r. For a range of r, however, dilution leads to an enhanced cooperation. An analytic treatment is developed for ℱC I + ℱC II, with ℱC I emphasizing the importance of the small clusters of players especially for ℱC II from the other players is shown to be inadequate. A local configuration approximation (LCA) that treats the local competing configurations as the variables and amounts to include spatial correlation up to the neighborhood of a player’s neighbors is developed. Results of ℱ C (ρ) and the number of different local configurations from LCA are in good agreement with simulation results. A transparent physical picture of the dynamics stemming from LCA is also presented. The theoretical approach provides a framework that can be readily applied to competing agent-based models in structurally ordered and disordered populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Axelrod, W.D. Hamilton, Science 211, 1390 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  2. R.M. May, Nature 292, 291 (1981)

    Article  ADS  Google Scholar 

  3. M.A. Nowak, R.M. May, Nature 359, 826 (1992)

    Article  ADS  Google Scholar 

  4. K. Brauchli, T. Killingback, M. Doebeli, J. Theor. Biol. 200, 405 (1999)

    Article  Google Scholar 

  5. G. Szabó, C. Hauert, Phys. Rev. Lett. 89, 118101 (2002)

    Article  ADS  Google Scholar 

  6. F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005)

    Article  ADS  Google Scholar 

  7. M.A. Nowak, Science 314, 1560 (2006)

    Article  ADS  Google Scholar 

  8. O. Gräser, C. Xu, P.M. Hui, New J. Phys. 13, 083015 (2011)

    Article  ADS  Google Scholar 

  9. Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 2, 369 (2012)

    ADS  Google Scholar 

  10. R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984)

  11. M. Nakamaru, H. Matsuda, Y. Iwasa, J. Theor. Biol. 184, 65 (1997)

    Article  Google Scholar 

  12. V.C.L. Hutson, G.T. Vickers, Phil. Trans. R. Soc. London B 348, 393 (1995)

    Article  ADS  Google Scholar 

  13. P. Grim, BioSystems 37, 3 (1996)

    Article  ADS  Google Scholar 

  14. M.A. Nowak, S. Bonhoeffer, R.M. May, Proc. Natl. Acad. Sci. USA, 91, 4877 (1994)

    Article  ADS  Google Scholar 

  15. F.C. Santos, J.M. Pacheco, T. Lenaerts, Proc. Natl. Acad. Sci. USA, 103, 3490 (2006)

    Article  ADS  Google Scholar 

  16. A. Cassar, Games Econ. Behav. 58, 209 (2007)

    Article  MathSciNet  Google Scholar 

  17. L.-X. Zhong, D.-F. Zheng, B. Zheng, C. Xu, P.M. Hui, EPL 76, 724 (2006)

    Article  ADS  Google Scholar 

  18. V. Sasidevan, S. Sinha, Sci. Rep. 5, 13071 (2015)

    Article  ADS  Google Scholar 

  19. A. Bovier, Statistical Mechanics of Disordered Systems (Cambridge University Press, Cambridge, 2006)

  20. D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor & Francis, 1992)

  21. J. Marro, A. Labarta, J. Tejada, Phys. Rev. B 34, 347 (1986)

    Article  ADS  Google Scholar 

  22. M.H. Vainstein, J.J. Arenzon, Phys. Rev. E 64, 051905 (2001)

    Article  ADS  Google Scholar 

  23. J.-Y. Guan, Z.-X. Wu, Y.-H. Wang, Chin. Phys. 16, 3566 (2007)

    Article  ADS  Google Scholar 

  24. M.A. Nowak, S. Bonhoeffer, R.M. May, Int. J. Bifurc. Chaos 4, 33 (1994)

    Article  MathSciNet  Google Scholar 

  25. E.A. Sicardi, H. Fort, M.H. Vainstein, J.J. Arenzon, J. Theor. Biol. 256, 240 (2009)

    Article  MathSciNet  Google Scholar 

  26. C. Hauert, M. Doebeli, Nature 428, 643 (2004)

    Article  ADS  Google Scholar 

  27. B. Skyrms, The Stag Hunt and the Evolution of Social Structure (Cambridge University Press, Cambridge, 2004)

  28. W. Zhang, C. Xu, P.M. Hui, Eur. Phys. J. B 86, 196 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. M.G. Zimmermann, V.M. Eguíluz, Phys. Rev. E 72, 056118 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. O. Gräser, C. Xu, P.M. Hui, EPL 87, 38003 (2009)

    Article  ADS  Google Scholar 

  31. F. Vazquez, V.M. Eguíluz, M. San Miguel, Phys. Rev. Lett. 100, 108702 (2008)

    Article  ADS  Google Scholar 

  32. G. Demirel, F. Vazquez, G.A. Böhme, T. Gross, Physica D 267, 68 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. C.-P. Zhu, H. Kong, L. Li, Z.-M. Gu, S.-J. Xiong, Physica A 375, 1378 (2011)

    Google Scholar 

  34. M. Ji, C. Xu, C.W. Choi, P.M. Hui, New J. Phys. 15, 113024 (2013)

    Article  ADS  Google Scholar 

  35. T. Gross, C. D’Lima, B. Blasius, Phys. Rev. Lett. 96, 208701 (2006)

    Article  ADS  Google Scholar 

  36. T. Gross, I. Kevrekidis, EPL 82, 38004 (2008)

    Article  MathSciNet  Google Scholar 

  37. L.B. Shaw, I.B. Schwartz, Phys. Rev. E 77, 066101 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  38. O. Gräser, P.M. Hui, C. Xu, Physica A 390, 906 (2011)

    Article  ADS  Google Scholar 

  39. C. Nardini, B. Kozma, A Barrat, Phys. Rev. Lett. 100, 158701 (2008)

    Article  ADS  Google Scholar 

  40. V. Marceau, P.-A. Noël, L. Hébert-Dufresne, A. Allard, L.J. Dubé, Phys. Rev. E 82, 036116 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  41. J.P. Gleeson, Phys. Rev. Lett. 107, 068701 (2011)

    Article  ADS  Google Scholar 

  42. P. Holme, M.E.J. Newman, Phys. Rev. E 74, 056108 (2006)

    Article  ADS  Google Scholar 

  43. R. Durrett, J.P. Gleeson, A.L. Lloyd, P.J. Mucha, F. Shi, D. Divakoff, J.E.S. Socolar, C. Varghese, Proc. Natl. Acad. Sci. USA 109, 3682 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  44. F. Vazquez, V.M. Eguíluz, New J. Phys. 10, 063011 (2008)

    Article  Google Scholar 

  45. P. Klimek, R. Lambiotte, S. Thurner, EPL 82, 28008 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  46. P. Weiss, J. Phys. 6, 661 (1907)

    Google Scholar 

  47. P. Fulde, Electron Correlations in Molecules and Solids (Springer, 2002)

  48. Y. Harada, Y. Iwasa, Res. Popul. Ecol. 36, 237 (1994)

    Article  Google Scholar 

  49. S.P. Ellner, J. Theor. Biol. 210, 435 (2001)

    Article  Google Scholar 

  50. F. Fu, M.A. Nowak, C. Hauert, J. Theor. Biol. 266, 358 (2010)

    Article  MathSciNet  Google Scholar 

  51. Y.-C. Ni, H.P. Yin, C. Xu, P.M. Hui, Eur. Phys. J. B 80, 233 (2011)

    Article  ADS  Google Scholar 

  52. C. Xu, P.M. Hui, unpublished

  53. N.W.H. Chan, C. Xu, S.K. Tey, Y.J. Yap, P.M. Hui, Physica A 392, 168 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.M. Hui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Zhang, W., Du, P. et al. Understanding cooperative behavior in structurally disordered populations. Eur. Phys. J. B 89, 152 (2016). https://doi.org/10.1140/epjb/e2016-60826-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60826-y

Keywords

Navigation